Меню

Чем определяются потери энергии от вихревых токов

Вихревые токи

Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.

Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.

Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.

вихревые токи

Фото: Вихревые токи

Токи Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.

Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

схема вихревые токиСхема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Вихри и скин-эффект

В том случае, когда возникают очень сильные вихревые токи (при высокочастотном токе), в телах плотность тока становится значительно меньше, чем на их поверхностях. Это так называемый скин эффект, его методы используются для создания специальных покрытий для проводов и в трубах, которые разрабатываются специально для вихре-токов и тестируются в экстремальных условиях.

Это доказал еще ученый Эккерт, который исследовали ЭДС и трансформаторные установки.

схема индукционного нагрева

Схема индукционного нагрева

Принципы вихревых токов

Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.

Закон Ома

Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.

Индуктивность

Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.

Магнитные поля

На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.

Магнитное поле вихревых токов

Дефектоскопия

Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:

  1. Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
  2. Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
  3. Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
  4. Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.

Обнаружение контура дефектоскопом

Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.

Читайте также:  Суммарный ток потребляемый электродвигателем

Уменьшаем вихревые токи

Для того чтобы уменьшить вихревые токи катушек индуктивности нужно увеличить сопротивление в этих механизмах. В частности рекомендуется использовать лицендрат и изолированные провода.

Источник

Потери в сердечниках, обусловленные вихревыми токами

Нелинейные индуктивные элементы

Под нелинейными индуктивными элементами понимают индуктивные катушки с обмотками, намотанными на замкнутые сердечники из ферромагнитного материала, для которых зависимость магнитного потока в сердечнике от протекающего по обмотке тока нелинейна.

Нелинейные индуктивные катушки подразделяются на управляемые и неуправляемые. На электрических схемах нелинейную индуктивную катушку изображают в виде замкнутого сердечника с обмоткой (рис.35.1) или как показано на рисунке 35.2.

Протекающий по катушке ток создает в сердечнике магнитный поток Ф с индукцией . Кривая подобна основной кривой намагничивания , так как индукция пропорциональна магнитному потоку, а напряженность – току.

При малых токах, т.е. на начальном участке характеристики, магнитный поток растет пропорционально току и индуктивность катушки остается постоянной.

По мере увеличения тока наступает магнитное насыщение, и при значительном увеличении тока магнитный поток изменяется незначительно, то есть знаменатель дроби растет быстрее ее числителя. В результате с ростом тока индуктивность катушки уменьшается, а значит, уменьшается и индуктивное сопротивление

Сердечники нелинейных индуктивных катушек при относительно низких частотах делают обычно двух типов: пакетные и спиральные.

Пакетные сердечники состоят из тонких пластин ферромагнитного материала кольцевой П — или Ш — образной формы.

Спиральные сердечники изготовляют из тонкой ферромагнитной ленты, навитой в виде спирали.

Пластины пакетного и отдельные витки спирального сердечников изолируют друг от друга эмалевым лаком или каким-либо иным изолирующим составом и запекают. Такая изоляция необходима для уменьшения потерь энергии в сердечнике от вихревых токов.

При работе на высоких частотах потери в листовых сердечниках резко возрастают, поэтому сердечники, предназначенные для работы на высоких частотах, выполняют из магнитомягкого феррита.

Потери в сердечниках, обусловленные вихревыми токами

При протекании по обмотке катушки с ферромагнитным сердечником переменного тока в последнем возбуждается переменный магнитный поток. Под действием этого потока в листах сердечника возникают вихревые токи, приводящие к нагреву сердечника.

Рассмотрим один лист такого сердечника. Пусть магнитный поток Ф направлен вдоль листа (рис.35.3). В плоскости, перпендикулярной магнитному потоку, будет индуктироваться ЭДС, которая вызовет в сердечнике вихревой ток. Вихревые токи, возникающие в листе, создают собственный магнитный поток, который согласно принципу электромагнитной инерции будет направлен встречно по отношению к потоку, вызывающему вихревые токи.

При этом активная мощность, рассеиваемая в листе, пропорциональна квадрату наведенной в листе ЭДС и обратно пропорциональна сопротивлению контура, по которому течет вихревой ток:

. (35.1)

ЭДС, наводимые в листе, при заданной ширине лиса b, пропорциональны его толщине a, амплитудному значению магнитной индукции Bm и частоте f, т.е.

(35.2)

В свою очередь, сопротивление контура пропорционально его периметру и удельному сопротивлению материала сердечника γ. При b>>a периметр в основном определяется шириной листа и не зависит от его толщины. Отсюда

(35.3)

Из последнего выражения видно, что уменьшить потери энергии в листовых сердечниках можно двумя способами:

1) изготовлением сердечников из тонких, изолированных друг от друга листов;

2) добавлением в ферромагнитный материал примесей, увеличивающих его удельное сопротивление.

Источник



Потери на гистерезис и вихревые токи

Во время перемагничивания магнитных материалов переменным магнитным полем, часть энергии магнитного поля, участвующего в процессе перемагничивания, теряется. На единицу массы определенного магнитного материала в форме тепла рассеивается определенная часть мощности, которую называют «удельные магнитные потери».

Удельные магнитные потери включают в себя динамические потери, а также потери на гистерезис. К динамическим потерям относятся потери, вызываемые вихревыми токами (индуцируемыми в материале) и магнитной вязкостью (так называемое магнитное последействие). Потери же на магнитный гистерезис объясняются необратимыми перемещениями границ доменов.

Силовой трансформатор на опоре ВЛ

Каждому магнитному материалу соответствует своя величина потерь на гистерезис, пропорциональная частоте перемагничивающего магнитного поля, а также площади гистерезисной петли данного материала.

Для нахождения мощности потерь связанных с гистерезисом в единице массы (в Вт/кг) используется следующая формула:

Мощность потерь на гистерезис

Для снижения гистерезисных потерь, чаще всего прибегают к применению таких магнитных материалов, коэрцитивная сила которых мала, то есть материалов с тонкой петлей гистерезиса. Такой материал отжигают, чтобы снять напряжения внутренней структуры, уменьшить количество дислокаций и иных дефектов, а также укрупнить зерно.

Вихревые токи также вызывают необратимые потери. Они связаны с тем, что перемагничивающее магнитное поле индуцирует ток внутри перемагничиваемого материала. Потери вызываемые вихревыми токами, соответственно, зависят от электрического сопротивления перемагничиваемого материала и от конфигурации магнитопровода.

Таким образом, чем значительнее удельное сопротивление (чем хуже проводимость) магнитного материала, тем меньшими окажутся потери, вызываемые вихревыми токами.

Потери на вихревые токи пропорциональны частоте перемагничивающего магнитного поля в квадрате, поэтому в устройствах работающих на достаточно высоких частотах неприменимы магнитопроводы из материалов с высокой электрической проводимостью.

Оценить мощность потерь на вихревые токи для единицы массы магнитного материала (в Вт/кг) можно воспользовавшись формулой:

Мощность потерь на вихревые токи

Мощность потерь на вихревые токи для листовых материалов

Так как количественно потери на вихревые токи зависят от квадрата частоты, то для работы в области высоких частот необходимо прежде всего принимать во внимание потери именно на вихревые токи.

Для минимизации этих потерь стараются использовать магнитопроводы с более высоким электрическим сопротивлением.

Чтобы сопротивление увеличить, сердечники набирают из множества взаимно изолированных листов ферромагнитного материала с достаточно высоким собственным удельным электрическим сопротивлением.

Шихтованный магнитопровод

Порошкообразный магнитный материал прессуют с диэлектриком, дабы частички магнитного материала оказались отделены друг от друга частичками диэлектрика. Так получают магнитодиэлектрики.

Еще вариант — применение ферритов — особой ферримагнитной керамики, отличающейся высоким удельным электрическим сопротивлением, близким к сопротивлению диэлектриков и полупроводников. Фактически ферриты являются твердыми растворами оксида железа с оксидами некоторых двухвалентных металлов, что можно описать обобщенной формулой:

Читайте также:  Момент асинхронного двигателя через ток

Ферриты

С уменьшением толщины листа металлического материала, соответственно уменьшаются и потери вызываемые вихревыми токами. Но одновременно растут потери связанные с гистерезисом, ибо с утончением листа размер зерна также уменьшается, а значит растет коэрцитивная сила.

Практически с ростом частоты потери на вихревые токи увеличиваются сильнее нежели потери на гистерезис, в этом можно убедиться, сравнив две первые формулы. И на определенной частоте потери на вихревые токи начинают все более преобладать над потерями на гистерезис.

Это значит, что хотя толщина листа и зависит от рабочей частоты, тем не менее для каждой частоты должна быть подобрана определенная толщина листа, с которой будут минимизированы магнитные потери в целом.

Обычно магнитным материалам свойственно запаздывание изменения собственной магнитной индукции в зависимости от длительности действия перемагничивающего поля.

Данное явление вызывает потери, связанные с магнитным последействием (или так называемой магнитной вязкостью). Это связано с инерционностью процесса перемагничивания доменов. Чем короче длительность приложенного магнитного поля — тем длительнее запаздывание, а значит и магнитные потери, вызываемые «магнитной вязкостью», больше. Этот фактор необходимо учитывать при проектировании импульсных устройств с магнитными сердечниками.

Потери мощности от магнитного последействия невозможно рассчитать прямо, но их можно найти косвенно — как разность между полными удельными магнитными потерями и суммой потерь на вихревые токи и на магнитный гистерезис:

Потери на гистерезис и вихревые токи

Итак, в процессе перемагничивания наблюдается некоторое отставание магнитной индукции от напряженности перемагничивающего магнитного поля по фазе. Причиной тому опять же вихревые токи, которые по закону Ленца препятствуют изменению магнитной индукции, гистерезисные явления и магнитное последействие.

Фазовый угол запаздывания называется углом магнитных потерь δм. В характеристиках динамических свойств магнитных материалов указывается такой параметр как тангенс угла магнитных потерь tgδм.

Здесь приведена схема замещения и векторная диаграмма для тороидальной катушки с сердечником из магнитного материала, где r1- эквивалентное сопротивление всех магнитных потерь:

Схема замещения и векторная диаграмма для тороидальной катушки с сердечником из магнитного материала

Видно, что тангенс угла магнитных потерь обратно пропорционален добротности катушки. Возникающую при данных условиях индукцию Bm в перемагничиваемом материале можно разложить на две составляющие: первая — совпадает по фазе с напряженностью перемагничивающего поля, вторая — отстает от нее на 90 градусов.

Первая составляющая непосредственно связана с обратимыми процессами при перемагничивании, вторая — с необратимыми. Применяемые в цепях переменного тока, магнитные материалы характеризуются в связи с этим таким параметром как комплексная магнитная проницаемость:

Источник

Токи Фуко. Вихревые токи. Описание.

Природа вихревых токов

Фото 2

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.
Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

Фото 3

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Фото 4

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя. Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Читайте также:  Что может стать результатом электрического удара током

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.
При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt Читайте также: Акт передачи показаний электросчетчика при смене собственника

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Следующая страница «ЭДС индукции в движущихся проводниках»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд.Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках — Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Источник