Меню

Число фарадея плотности тока

Физика

Явление электролиза заключается в выделении вещества на электродах при пропускании электрического тока через электролит.

Электролиты (растворы, расплавы) обладают ионной проводимостью, т.е. в них имеются положительные и отрицательные ионы:

  • катионы — положительные ионы;
  • анионы — отрицательные ионы.

Электрическое поле в электролите создается двумя электродами:

  • анодом — положительным электродом;
  • катодом — отрицательным электродом.

Под воздействием электрического поля, созданного электродами (рис. 8.16):

  • анионы (отрицательные ионы) движутся к аноду;
  • катионы (положительные ионы) движутся к катоду.

На электродах происходит осаждение соответствующего вещества.

Первый закон Фарадея для электролиза : масса вещества, выделившегося на каком-либо из электродов за определенное время, пропорциональна величине электрического заряда, прошедшего через электролит за это время:

где k — электрохимический эквивалент вещества; q — величина электрического заряда, протекающего через электролит.

Формулу для вычисления заряда можно записать:

  • через силу тока —

где I — сила тока; t — время протекания тока через электролит;

  • через плотность тока —

где j — плотность тока, j = I / S ; S — площадь электрода.

Тогда первый закон Фарадея принимает одну из следующих форм:

m = kIt , m = kjSt .

Второй закон Фарадея для электролиза : электрохимический эквивалент вещества пропорционален его химическому эквиваленту:

где x — химический эквивалент вещества, x = A / n ; A — относительная атомная масса элемента; n — его валентность; F — постоянная Фарадея, F = 9,65 ⋅ 10 4 Кл/моль.

Если постоянная Фарадея отсутствует в условии задачи, то для ее вычисления можно использовать формулу

где e — элементарный заряд, e = 1,6 ⋅ 10 −19 Кл; N A — постоянная (число) Авогадро, N A = 6,02 ⋅ 10 23 моль −1 .

Объединенный закон Фарадея для электролиза получается путем подстановки формулы для электрохимического эквивалента (второго закона Фарадея) в выражение для массы вещества, выделившегося на электроде (первый закон Фарадея):

где A — относительная атомная масса элемента; I — сила тока, протекающего через электролит; t — время протекания тока; n — валентность элемента; F — постоянная Фарадея, F = 9,65 ⋅ 10 4 Кл/моль.

Молекулы некоторых веществ (например, молекулы двухатомных газов) при электролизе расщепляются на атомы. Поэтому при вычислениях необходимо учитывать соотношения между молярной и атомной массами:

  • для одноатомных молекул вещества —

где M — молярная масса вещества;

  • двухатомных молекул вещества —

Для определения толщины покрытия электрода веществом следует пользоваться алгоритмом :

1) записать объединенный закон Фарадея:

2) представить массу вещества, выделившегося на электроде, в виде произведения:

где ρ — плотность вещества, выделяющегося на электроде; V — объем вещества, V = Sh ; S — площадь электрода; h — толщина покрытия;

3) подставить произведение в объединенный закон Фарадея;

4) выразить искомую толщину покрытия:

h = A I t n F ρ S ,

где A — относительная атомная масса элемента; I — сила тока, протекающего через электролит; t — время протекания тока; n — валентность; F — постоянная Фарадея, F = 9,65 ⋅ 10 4 Кл/моль.

Пример 19. К зажимам электролитической ванны, предназначенной для никелирования изделий, подведено напряжение 1,8 В. Ванна заполнена раствором электролита сопротивлением 3,7 Ом. В процессе электролиза на электродах выделяется двухвалентный никель с молярной массой 59 г/моль, плотность никеля составляет 8,9 г/см 3 . В раствор помещают некоторое изделие с площадью поверхности 1,2 дм 2 . Рассчитать, за какое время изделие покроется слоем никеля толщиной 30 мкм. Какая энергия будет израсходована при этом?

Решение . 1. Воспользуемся обобщенным законом Фарадея для электролиза:

m = 1 F ⋅ A n I t ,

где m — масса никеля, выделившегося на поверхности изделия; A — атомная масса никеля (совпадает с молярной массой, так как никель является одноатомным), A = 59 г/моль; F — постоянная Фарадея, F = 9,65 ⋅ 10 4 Кл/моль; n — валентность никеля, n = 2; I — сила тока в электролитической ванне; t — время никелирования изделия.

Из данного закона следует, что для расчета времени никелирования изделия

необходимо знать силу тока в электролите и массу выделившегося никеля.

Силу тока найдем из закона Ома для участка цепи:

где U — напряжение на зажимах ванны, U = 1,8 В; R — сопротивление электролита, R = 3,7 Ом.

Массу определим с помощью произведения:

где ρ — плотность никеля, ρ = 8,9 г/см 3 ; V — объем никеля, выделившегося на поверхности изделия, V = Sh ; S — площадь поверхности изделия, S = 1,20 дм 2 ; h — толщина покрытия, h = 30 мкм.

Подставим выражения для I и m в формулу, определяющую время никелирования изделия:

t = n ρ S h F R A U ,

и рассчитаем искомое время:

t = 2 ⋅ 8,9 ⋅ 10 3 ⋅ 1,2 ⋅ 10 − 2 ⋅ 30 ⋅ 10 − 6 ⋅ 9,65 ⋅ 10 4 ⋅ 3,7 59 ⋅ 10 − 3 ⋅ 1,8 = 6,0 ч.

2. При электролизе расходуется энергия, которую можно найти по формуле

или с учетом формулы для времени никелирования —

E = U 2 R n ρ S h F R A U = U n ρ S h F A .

E = 1,8 ⋅ 2 ⋅ 8,9 ⋅ 10 3 ⋅ 1,2 ⋅ 10 − 2 ⋅ 30 ⋅ 10 − 6 ⋅ 9,65 ⋅ 10 4 59 ⋅ 10 − 3 = 19 кДж.

Для покрытия изделия слоем никеля указанной толщины требуется 6,0 ч; при этом расходуется электроэнергия 19 кДж.

Источник

14.Законы Фарадея для электролиза. Закон Ома для плотности тока в электролите.

Основные законы электролиза были установлены в 1836г. Майклом Фарадеем (Faraday M., 1791-1867):

огласно 1-му закону, масса вещества г, прореагировавшего в процессе электролиза, прямо пропорциональна силе тока I и времени электролиза t, то есть количеству пропущенного электричества Q = It (предполагается, что I не зависит от t; в противном случае масса пропорциональна: где t1 и t2 — моменты включения и выключения тока).

Читайте также:  За направление тока принимают направление движения отрицательно заряженных частиц электронов

Согласно 2-му закону, для разных электродных процессов при одинаковом количестве пропущенного электричества Q массы прореагировавших веществ относятся друг к другу так же, как эквиваленты химические этих веществ. Оба закона Фарадея объединяются одним уравнением: m=(1\F)QM\z

где M — молярная масса вещества, участвующего в электролизе, z — число элементарных зарядов, соответствующее превращению одной молекулы этого вещества, 1/F- коэффициент пропорциональности, общий для всех веществ, F — постоянная Фарадея, равная 96484,56 Кл/моль.

Законы Фарадея законы относятся к числу строгих законов, но в ряде случаев могут наблюдаться кажущиеся отклонения от них, вызываемые следующими причинами:

1) в нестационарных условиях электролиза часть электричества затрачивается на заряжение двойного электрического слоя.

2) если электролит обладает электронной проводимостью (например, раствор металлического Na в жидком аммиаке), то часть тока через электролит переносят электроны, а не ионы, и соответствующее количество электричества не участвует в процессе электролиза;

3) наряду с основным процессом электролиза, например образованием металлического Zn по реакции Zn2+ + 2е→ Zn, часть тока может затрачиваться на протекание параллельных электрохим. реакций, например: 2H3O+ + 2е = H2 + 2H2O; O2 + 4е + 4H3O+ = 6H2O.

Системы, в которых полностью исключены указанные причины кажущихся отклонений от законов Фарадея, получили название кулонометров; их использование позволяет по количеству образовавшихся продуктов электролиза точно определить кол-во пропущенного электричества. В кулонометрах обычно применяют электрохимические реакции Ag+ + е = Ag или 3I- = I3- + 2е.

Законы Фарадея законы сыграли важную роль в понимании природы химической связи и развития атомно-молекулярной теории. Их используют при выводе всех уравнений, описывающих электрохимические превращения веществ на границах раздела проводников 1-го и 2-го рода. Практическое применение законы Фарадея законы находят в кулонометрии, а также при определении выхода реакции по току, то есть отношения теоретического количества электричества, рассчитанного на основе законов Фарадея законы, к количеству электричества, реально затраченному на получение данного вещества в процессе электролиза.

15. Электропроводность газов. Виды газового разряда.

Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воз­дух заряженный электрометр с хорошей изоляцией, то его заряд долго остается неизменным. Это объясняется тем, что га­зы при обычных условиях состоят из ней­тральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричест­ва, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (например, поднеся к заря­женному электрометру пламя свечи, наблюдаем спад его заряда; здесь электро­проводность газа вызвана нагреванием).

При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к об­разованию свободных электронов и поло­жительных ионов. Электроны могут при­соединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохожде­ние электрического тока через газы на­зывается газовым разрядом.

Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафио­летовое, рентгеновское и -излучения), корпускулярное излучение (потоки элек­тронов, протонов, -частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить оп­ределенную энергию, называемую энер­гией ионизации, значения которой для атомов различных веществ лежат в преде­лах 4—25 эВ.

Одновременно с процессом ионизации газа всегда идет и обратный процесс — процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединя­ются между собой с образованием ней­тральных атомов и молекул. Чем больше ионов возникает под действием ионизато­ра, тем интенсивнее идет и процесс ре­комбинации. Разряды, существующие только под действием внешних ионизаторов, называ­ются несамостоятельными. Разряд в газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным.

Самостоятельный разряд и его типы:

В зависимости от давления газа, кон­фигурации электродов, параметров внеш­ней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.

1.Тлеющий разряд возникает при ни­зких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30— 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно отка­чивая из трубки воздух, то при давлении ж 5,3—6,7 кПа возникает разряд в виде светящегося извилистого шнура краснова­того цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ж 13 Па

2. Искровой разряд возникает при больших напряженностях электрического поля (Ё=3•10 6 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонко-

го канала, сложным образом изогнутого и разветвленного.

Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованно­го газа — стримеров.

3. Дуговой разряд. Если после зажи­гания искрового разряда от мощного источника постепенно уменьшать расстоя­ние между электродами, то разряд стано­вится непрерывным — возникает дуговой разряд. При этом сила тока резко воз­растает, достигая сотен ампер, а напряже­ние на разрядном промежутке падает.

Читайте также:  Как в генераторе из постоянного тока получить переменный ток

По современным представлениям, ду­говой разряд поддерживается за счет вы­сокой температуры катода из-за интенсив­ной термоэлектронной эмиссии, а также термической ионизации молекул, обуслов­ленной высокой температурой газа.

Дуговой разряд находит широкое при­менение в народном хозяйстве для сварки и резки металлов, получения высококаче­ственных сталей (дуговая печь) и освеще­ния (прожекторы, проекционная аппара­тура).

4. Коронный разряд — высоковольт­ный электрический разряд при высоком (например, атмосферном) давлении в резконеоднородном поле вблизи электродов с большой кривизной поверхности (напри­мер, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то во­круг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае от­рицательной короны рождение электронов, вызывающих ударную ионизацию молекул

катода под действием положительных ионов, в случае положительной — вслед­ствие ионизации газа вблизи анода. В естественных условиях корона возника­ет под влиянием атмосферного электриче­ства у вершин мачт (на этом основано действие молниеотводов), деревьев.

Источник



Законы Фарадея. Выход продукта по току

Количество веществ, образующихся при электролизе на электродах, можно рассчитать, пользуясь двумя законами электролиза, установленными Фарадеем в 1833 г. которые с учетом современной терминологии можно сформулировать в следующем виде:

1) количество вещества, испытавшего электрохимические превращения на электроде, прямо пропорционально количеству прошедшего электричества;

2) массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как молярные массы их эквивалентов.

Для расчетов используют математическое выражение обобщенного закона Фарадея:

где: Э – эквивалентная масса вещества (молярная масса эквивалента); F– постоянная Фарадея, равная 96500 Кл/моль;. I – сила тока, А; t – время проведения электролиза, с; М – молярная масса вещества; n – число отданных или принятых электронов; К – электрохимический эквивалент вещества.

Практический расход тока при электролизе вследствие протекания побочных процессов (взаимодействие полученных веществ с электродом или электролитом) превышает его количество, рассчитанное согласно закону Фарадея. Следовательно, практическая масса полученных веществ отличается от теоретически рассчитанной. Отношение массы практически полученного вещества к теоретически рассчитанной массе, выраженное в процентах, называется выходом вещества по току:

Примеры решения типовых задач.

Пример 1.Ряд активности металлов, электродных потенциалов.

Задача 1. Медная пластинка массой 10 г была погружена в раствор нитрата серебра, затем промыта водой и высушена. Масса ее оказалась равной 11,0 г. Сколько серебра из раствора выделилось на пластинке?

Решение. Для решения этой задачи необходимо знать стандартные электродные потенциалы металлов, т.е. место их в ряду напряжений (ряду активности металлов Бекетова).

Из этих положительных потенциалов стандартный электродный потенциал меди менее положителен, следовательно, пойдёт реакция вытеснения:

Для того чтобы вычислить количество серебра, выделившегося на медной пластинке, надо помнить, что медная пластинка в этой реакции и сама растворяется, теряя в массе.

Обозначим количество растворившейся меди через x г, тогда масса медной пластинки с учётом её растворения будет (10-х) г, масса выделившегося серебра на основе реакции:

64,0 г Cu – 2 ∙ 108 г Ag

х г Cu – (1+х) г Ag

216х =64+64х, 152x=64, x=0,42 г.

Таким образом, в течение реакции растворилось 0,42 г меди и выделилось 1,0 + 0,42 = 1,42 г серебра.

Пример 2.Работа гальванического элемента и расчёт ЭДС.

Задача 1. Напишите уравнения реакций, происходящих при работе гальванического элемента, состоящего из цинковой и серебряной пластин, опущенных в растворы своих солей с концентрацией катионов, равной 1 моль/л.

Решение. Стандартные электродные потенциалы цинкового и серебряного электродов соответственно равны:

Металл, имеющий более отрицательное значение электродного потенциала при работе гальваничеcкого элемента, является анодом. В данном случае протекают реакции:

т.е. цинк, являясь анодом, растворяется при работе гальваничеcкого элемента, а серебро осаждается в виде металла на катоде. ЭДС гальванического элемента равна

Пример 3. Зависимость электродных процессов от концентрации.

Задача 1. Рассчитайте, чему равна ЭДС элемента, составленного из медной и магниевой пластин, опущенных в растворы своих солей, если концентрация катиона у анода равна 0,1 моль/л, а у катода – 0,001 моль/л.

Решение. Стандартные электродные потенциалы магниевого и медного электродов соответственно равны:

Следовательно, анодом будет магниевый электрод, катодом – медный. Электродный потенциал металла, опущенного в раствор с любой концентрацией катиона в растворе, определяют по формуле Нернста:

где: с – концентрация катиона, моль/л;

п – число электронов, принимающих участие в реакции.

Отсюда потенциал магниевого электрода

= –2,38 + lg10 –1 = –2,38 + 0,029(–1) = –2,409 В.

Потенциал медного электрода

= +0,34 + lg10 –3 = +0,34 + 0,029(–3) = +0,253 В.

Тогда для гальванического элемента

Пример 4. Определение возможности протекания реакции в гальвани-ческом элементе.

Задача 1. Исходя из величины стандартных электродных потенциалов и значения энергии Гиббса ΔG о 298, укажите, можно ли в гальваническом элементе осуществить следующую реакцию:

Fe 0 + Cd 2+ = Fe 2+ + Cd 0 .

Решение. Надо составить схему гальванического элемента, отвечающего данной реакции. В этой реакции происходит восстановление ионов кадмия и окисление атомов железа:

Читайте также:  Получение электрического тока вращением

Fe 0 – 2е = Fe 2+

Cd 2+ + 2е = Cd 0 .

Пользуясь таблицей стандартных электродных потенциалов, определяем ЭДС этого гальваничекого элемента:

Изменение величины энергии Гиббса с величиной ЭДС связано соотношением:

где: – изменение величины энергии Гиббса;

n – число электронов, принимающих участие в реакции;

F–число Фарадея;

ЭДС гальванического элемента.

Находим = –2∙96500∙0,04= – 7720 Дж.

Так как >0, . с). Количество электричества Q=I =2 . 15 . 60=1800 Кл. Молярная масса эквивалента меди (II) равна 64,0/2=32 г/моль. Следовательно:

96500 Кл – 32 г
1800 Кл – х г

Пример 6. Определение электрохимического эквивалента и выхода по току.

Задача 1. При электролизе водного раствора AgNO3 в течение 50 минут при силе тока 3А выделилось 9,6 г серебра. Электролиз проводился с растворимым анодом. Напишите уравнение реакций катодного и анодного процессов и определите электрохимический эквивалент серебра в г/Кл и г/А . ч и выход по току.

Решение. Нитрат серебра диссоциирует:

Процессы, протекающие на электродах:

Молярная масса эквивалента Ag О =108 г/моль.

Определяем массу серебра, которая выделилась бы теоретически при прохождении через раствор данного количества электричества:

Источник

Электролиз. Законы Фарадея

date image2014-02-12
views image18726

facebook icon vkontakte icon twitter icon odnoklasniki icon

Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты.

При электролизе на электродах непрерывно протекают окислительно-восстановительные реакции. На катоде (К(-)) происходит процесс восстановления, на аноде (А(+)) – процесс окисления. Продукты этих реакций или откладываются на электродах, или вступают во вторичные реакции (взаимодействуют между собой, с молекулами растворителя или с веществом электрода), или накапливаются в растворе у электродов. Течение первичных анодных и катодных реакций подчиняется законам Фарадея.

Первый закон Фарадея: масса вещества m, выделяемая на электроде электрическим током, пропорциональная количеству электричества Q, прошедшему через электролит:

m = kQ, но Q =It (9.16)

где I – сила тока, А; t – время пропускание тока, с.

k – коэффициент пропорциональности, равный количеству вещества, выделяемого при прохождении одного кулона (Кл) электричества (электрохимический эквивалент).

Второй закон Фарадея: массы различных веществ, выделенных одним и тем же количеством электричества, пропорциональных их химическим эквивалентам (Мэ):

Для выделения 1 грамма эквивалента вещества требуется пропустить через электролит одно и тоже количество электричества, равное приблизительно 96500 Кл (число Фарадея). Следовательно:

Подставив последнее уравнение в (9.17), получим формулу, объединяющую оба закона Фарадея.

Соотношение (9.18) используют в расчетах процессов при электролизе. При практическом проведении электролиза всегда некоторая часть электрической энергии затрачивается на побочные процессы. Важной характеристикой рентабельности установки для проведения электролиза (электролизера) является выход по току (h, %):

где mпр – масса фактически выделенного вещества; mтеор – масса вещества, которая должна была выделиться в соответствии с законом Фарадея.

На процесс электролиза существенно влияет плотность тока, то есть сила тока, приходящаяся на единицу рабочей поверхности электрода.

Рассмотрим процессы, протекающие на катоде и аноде. Если электролиз идет в расплаве соли, то на катоде выделяется металл, а на аноде газ аниона.

Например, электролиз расплава хлорида натрия приводит к восстановлению ионов Na + до металлического натрия на катоде (отрицательном электроде)

и окислению хлорид ионов Cl – до газообразного хлора на аноде (положительном электроде)

Если электролиз идет в растворе соли, то помимо катиона металла и аниона в растворе находятся ионы H + и OH + :

При наличии нескольких видов ионов или недиссоциированных молекул электрохимически активных веществ возможно протекание нескольких электродных реакций. На катоде, прежде всего, протекает реакция с наиболее положительным потенциалом. Поэтому при катодном восстановлении возможно три случая:

Катионы металлов, стоящие в ряду напряжения от Li + до Al 3+ включительно не восстанавливаются на катоде, вместо них выделяется водород:

Катионы металлов, находящиеся в ряду напряжения от Al 3+ до H + (включительно) восстанавливаются одновременно с молекулами воды, что связано с более высокой поляризацией (перенапряжением) при выделении водорода, чем поляризацией (перенапряжением) разряда многих металлов:

Катионы металлов, стоящие в ряду напряжения после водорода полностью восстанавливаются на катоде:

На аноде в первую очередь реагируют наиболее сильные восстановители – вещества, имеющие наиболее отрицательные потенциалы.

На нерастворимом аноде (уголь, графит, платина, иридий) анионы кислородсодержащих кислот не окисляются, а окисляется вода с образованием кислорода:

Анионы бескислородных кислот (Cl — , I — , Br — , S 2- и т.д.) окисляются до простых веществ (Cl2, I2, Br2, S и т. д.) при высокой плотности тока. При малой плотности тока выделяется только кислород, а при выравнивании потенциала и протекают обе реакции.

На растворимом аноде идет процесс растворения самого анода, например, Сu +- 2e ® Cu 2+ .

Электролиз применяют в:

1) металлургии для получения меди, цинка, кобальта, марганца и других металлов;

2) в химической промышленности электролизом получают газообразный хлор, водород, кислород, щелочи, окислители (пероксид водорода, перманганат калия, хлораты и другие);

3) получение гальванопокрытий: никелирование, меднение, цинкование, хромирование;

4) электрохимическая анодная обработка металлов и сплавов для придания изделиям определенной формы.

Источник