Меню

Что называют элек током

Электрический ток

Что такое электрический ток

Электрический токЭлектрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля . Такими частицами могут являться: в проводниках – электроны , в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, «дырки» («электронно-дырочная проводимость»). Также существует «ток смещения «, протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/ t , где i — ток. А; q = 1,6 · 10 9 — заряд электрона, Кл; t — время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/ dt .

Ток течет в замкнутой цепи

Первым условием длительного существования электрического тока рассматриваемого вида является наличие источника, или генератора, поддерживающего разность потенциалов между носителями зарядов. Второе условие — замкнутость пути. В частности, для существования постоянного тока необходимо наличие замкнутого пути, по которому заряды могут перемещаться внутри контура без изменения их значения.

Как известно, в соответствии с законом сохранения электрических зарядов они не могут создаваться или исчезать. Поэтому, если любой объем пространства, где протекают электрические токи, окружить замкнутой поверхностью, то ток, втекающий в этот объем, должен быть равен току, вытекающему из него.

Замкнутый путь, по которому течет электрический ток, называют цепью электрического тока, или электрической цепью. Электрическая цепь — делится на две части: внутреннюю, в которой электрически заряженные частицы движутся против направления электростатических сил, и внешнюю часть, в которой эти частицы движутся в направлении электростатических сил. Концы электродов, к которым подсоединяется внешняя цепь, называются зажимами.

Итак, электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи .

Электрический ток и напряжение

Амперметр постоянного тока

Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

В общем случае, обозначив ток буквой i, а заряд q, получим:

Единица тока называется ампер (А) . Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Направленное движение электронов в проводнике

Рис. 1. Направленное движение электронов в проводнике

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда — электронов, движущихся в проводящих средах от минуса к плюсу.

Направление электрического тока в электролите и свободных электронов в проводнике

Направление электрического тока в электролите и свободных электронов в проводнике

Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока: I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения . Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.

Полный электрический ток — скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь: Постоянный ток

Ток намагниченности — постоянный микроскопический (амперовый) ток, являющийся причиной существования собственного магнитного поля намагниченных веществ.

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически.

Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные . Синусоидальным называют ток, изменяющийся по гармоническому закону:

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота w — скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения — буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Измерение переменного тока измерительными клещами

Переменный ток — это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение — перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми.

Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью.

При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

Читайте также:  Бросок тока в цепи постоянного тока

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Переменный ток

Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля.

Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой — наоборот.

Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Электрический ток во всех его проявлениях представляет собой кинетическое явление, аналогичное течению жидкости в замкнутых гидравлических системах. По аналогии процесс движения тока называется «течением» (ток течет).

Материал, в котором течёт ток, называется проводником. Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю.

Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по закону Ома для участка цепи и закону Ома для полной цепи.

Проводники электрического тока

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Источник

Электрический ток это заряд в движении, в металлах, газах, вакууме

Главная страница » Электрический ток это заряд в движении, в металлах, газах, вакууме

Электрический ток это заряд в движении, в металлах, газах, вакууме

Электрический ток – для лучшего понимания этого эффекта энергетики можно представить электрический заряд, находящийся в движении. Между тем, ток способен образоваться в результате природного эффекта — разряда статического электричества (удара молнии, контакта между пальцем и металлической пластиной заземления). Однако чаще всего, когда речь заходит об электрическом токе, имеется в виду контролируемая форма электричества, производимого генераторами, химическими и солнечными элементами батарей, топливными элементами.

Сущность электрического тока для физики

Значительная доля электрического заряда переносится электронами и протонами непосредственно внутри атома. Протоны обладают положительным зарядом, электроны, соответственно, отрицательным.

Протоны, в массе своей, размещаются внутри атомных ядер. Соответственно, транспорт заряда из одной области к другой осуществляется электронами.

Электроны в структуре проводящего материала (металлы) допускают свободное перемещение от атома к атому в так называемых зонах проводимости, выступающих наиболее высокими электронными орбитами.

Сформированная электродвижущая сила (ЭДС) создаёт дисбаланс зарядов. Этим дисбалансом электроны перемещаются (транспортируются) по структуре проводника электрическим током.

Электрический ток - движение электронов внутри проводника

Движение электронов в структуре проводника вполне сравнимо с течением воды внутри сантехнической трубы. Но это сравнение чисто условное в плане принципов транспортировки

В принципе, допустимо сравнивать электрический ток с потоком воды. Правда, следует помнить – вода и ток – вещи несовместимые.

Допустим, есть труба, полная воды. Если открыть кран на одном конце трубы, на другом конце вода появится практически мгновенно. Обусловлена такая ситуация поступающим после крана потоком воды, которая толкает жидкость уже находящуюся в трубе.

Нечто аналогичное происходит и в случае транспорта электрического тока через проводник. Электроны проводимости уже присутствуют внутри структуры провода.

Остаётся организовать толчок электронам на одном конце, активируя тем самым течение тока на другом конце практически мгновенно.

Электрический ток и скорость движения

Фактическая скорость электрона по структуре провода исчисляется несколькими миллионами метров в секунду. Однако для электрона не является характерным прямолинейное движение.

Электрон практически движется наугад, что физики называют скоростью дрейфа электрона. Однако скорость передачи в целом по структуре провода практически равна скорости света (300 млн. м/сек).

Для варианта переменного тока, когда направление движения меняется 50-60 раз в секунду, большая часть электронов никогда не «вытекает» из тела провода.

Электрический ток статическим разрядом

Вот так, играючи с котом, вполне достижимой становится генерация статического электричества, когда образуются высокие напряжения и совсем небольшой по величине ток

Дисбаланс заряда электронов достигается несколькими способами. Один из известных способов предполагает создание статического заряда в момент трения двух разных материалов одного о другой. Например, трением меховой шкурки животного о кусок минерала — янтаря.

Между тем такой вариант «генерации» чреват образованием очень высоких напряжений при очень низкой силе тока. Получаемый разряд длится не более доли секунды. Поэтому крайне сложно использовать этот способ формирования электрического тока для какой-либо полезной работы.

Что такое постоянный электрический ток?

Другим широко известным способом образования дисбаланса заряда является электрохимическая батарея. Первое такое устройство изобрели в 1800 году. Автором изобретения выступил итальянский физик — Алессандро Вольта.

В честь этого учёного названа единица измерения электродвижущей силы (напряжения) – вольт. Международными стандартами принято обозначение вольта в виде латинского символа — V.

Электрический ток электрохимической батареей - схема

Электрохимический элемент питания – упрощённая схема: 1 – коллектор; 2 – анод; 3 – корпус контейнера; 4 – катод, 5 — сепаратор

Для этого способа «генерации» используются чередующиеся цинковые и медные пластины. Пластины разделены одна с другой слоями ткани, которая пропитана солёной водой.

Такая конструкция способна создавать постоянный ток (движение электронов в одном направлении). С момента изобретения и до настоящего времени электрохимические батареи прошли значительный путь совершенства.

Другие способы организации источников постоянного тока включают:

  1. Топливные элементы, где химические процессы между кислородом и водородом приводят к получению тока (электрической энергии) в процессе.
  2. Фотоэлектрическая ячейка, где фотонная энергия солнечного света поглощается электронами и преобразуется в электрический ток (энергию).

Электрический воздушный компрессор, 220В/110В 30 мпаЭлектрический воздушный компрессор высокого давленияЭлектрический воздушный насос высокого давления

Что такое переменный электрический ток?

Значительная доля электроэнергии, используемой человеком, применяется в виде переменного тока, распределяемого по централизованной электрической сети.

Читайте также:  Электроинструмент по условиям опасности поражения электрическим током

Переменный ток вырабатывается электрическими генераторами – машинами, действующими по закону индукции Фарадея, когда изменяющееся магнитное поле способно индуцировать электрический ток в структуре проводника.

Генераторы наделяются вращающимися катушками из витков проволоки. Эти катушки в момент вращения пересекают магнитные поля, в результате чего производится электрический ток.

Причём образуется ток, меняющий направление на каждой половине оборота. Полный цикл прямого и обратного хода (частота) выполняется 50-60 раз в секунду (50-60 Гц).

Генератор переменного тока классическая схема устройства

Классическое исполнение традиционно применяемого устройства – генератора переменного тока. Такого рода системы широко применяются для нужд народного хозяйства

Генераторы традиционно вращаются паровыми турбинами, действующими:

  • на угле,
  • на природном газе,
  • на нефтяном топливе,
  • от ядерного реактора.

Нередко электрические генераторы работают в паре с ветряными или водяными турбинами, установленными на гидроэлектростанциях.

От генератора электричество проходит через ряд трансформаторов, где повышается до нужного высокого напряжения с последующей передачей потребителям.

Причина такого преобразования в том, что диаметром проводов определяется величина электрического тока (сила), переносимая без эффекта перегрева и потерь энергии. Однако величина напряжения ограничивается только качеством изоляции от земли.

Интересный факт — заряды переносятся только одним проводом, не двумя. Соответственно две транспортных линии обозначены как положительные и отрицательные.

Однако, поскольку полярность переменного напряжения изменяется 50-60 раз в секунду, две стороны переменной ЭДС обозначаются как горячие и заземлённые.

Магистральные линии электропередач традиционно выступают горячей стороной, тогда как заземлённая сторона проходит через Землю и завершает цепь.

Мощность и транспорт по линиям передач

Поскольку мощность равна напряжению, умноженному на силу заряда, допустимо передавать больше мощности по линии с той же силой, используя более высокое напряжение.

Затем переданное высокое напряжение снижается распределением через сеть подстанций, пока не достигнет трансформатора потребителя. Здесь напряжение снижается до 230В (110В в странах Америки).

Как только энергия достигает конца транспортировочной линии, большая часть используется одним из двух способов:

  1. Подачей тепла и света через электрическое сопротивление.
  2. Механическим движением через электрическую индукцию.

Есть несколько других применений — люминесцентные лампы и микроволновые печи, действующие несколько иным принципом, но львиная доля энергии идёт на устройства, основанные на сопротивлении и / или индуктивности. Электрический фен, к примеру, использует оба принципа одновременно.

Завершающий штрих на электрический ток

Обозначенные выше моменты подводят к важной особенности энергии: выполнению работы. Электрический ток способен совершать разнообразную работу:

  • освещать дом,
  • стирать и сушить одежду,
  • открывать двери и окна и т.д.

Однако все более важной для современного мира становится способность энергетической передачи информации формой двоичных данных.

Подключение к сети Интернет через компьютер требует, конечно, использования относительно небольшой доли энергии. Даже, например, по сравнению с обычным нагревателем (ТЭН) средней мощности. Но именно этот вариант использования энергии видится особо важным для современной жизни.

Аккумуляторы Aguion: аква-ионные гибридные батареи

Аккумуляторы Aquion: аква-ионные гибридные батареи

Микроволновый датчик движения на примере модели MS 773

Микроволновый датчик движения на примере модели MS 773

Твердотельное реле на три фазы + как подобрать ТТР для управления электродвигателем

Твердотельное реле на три фазы + как подобрать ТТР для управления электродвигателем

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник



Электрический ток

Электрический ток — направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. — Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. — Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест — дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE, которая перемещает заряд в направлении вектора этой силы.

Заряды в электрическом поле

На рисунке показано, что вектор силы F = -qE, действующей на отрицательный заряд -q, направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Электрический ток

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2 :

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ1 и φ2 между этими точками из расчёта:

U = A/Q = φ1φ2

Электрический ток может быть постоянным или переменным.

Постоянный ток — электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз.
Анионы — положительные ионы. Перемещаются к отрицательному электроду — катоду.
Катионы — отрицательные ионы. Перемещаются к положительному электроду — аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

Читайте также:  Устройства для ограничения токов короткого замыкания

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник

Электрический ток — что это такое

Электрический ток (эл ток, или просто ток) – движущая сила современной человеческой цивилизации. Без него остановятся заводы и фабрики, погрузятся во мрак города, пропадут тепло и горячая вода в домах, многие другие блага и достижения технического прогресса станут недоступными. Однако, несмотря на такую огромную роль данного явления в человеческой жизни, многие не знают, в чем его суть, благодаря чему он возникает и протекает. В этой статье будет рассмотрено, что такое ток, как он возникает, где применяется, какие частицы являются его носителями в различных веществах, какие физические законы являются основными для данного явления.

Электрический ток

Основные определения

Существует 2 основных определения данного явления: классическое и приводимое в академических учебниках. Суть каждого из них следующая:

  • Классическое определение электрического тока гласит, что он представляет собой направленное строго упорядоченное движение частиц, обладающих зарядом;
  • В академических учебных пособиях указывается, что электрический ток – это скорость, с которой заряд изменяется с течением определенного времени.

Из двух данных определений первое наиболее часто применяемое, второе – используется реже, так как не описывает сути природы электротока.

Электрическая энергия

Понятие «электрическая энергия» означает высвобождаемую при движении потока заряженных частиц энергию, источником которой служит аккумуляторная батарея или генератор, потребителем – подключенные к электрической сети приборы и оборудование. Применяется оно, как правило, в быту и технике в таком сокращенном варианте как «электроэнергия». Единицей измерения электроэнергии является киловатт-час (кВт/ч).

Где применяется электрический ток

Данное явление нашло широкое применение в таких областях человеческой цивилизации, как:

  • Промышленность;
  • Сельское хозяйство;
  • Коммунальное хозяйство;
  • Банковская сфера;
  • Транспорт;
  • Информационные технологии.

Кроме данных областей, электричество является основой быта любого современного человека – без него невозможно функционирование бытовых приборов, аудио,- и видеотехники, внутреннего и наружного освещения, отопительных котлов, охранного оборудования и других потребителей электроэнергии.

Условия, необходимые для получения электротока

Основными условиями образования электрического тока являются следующие:

  • Наличия источника – соединенного с турбиной генератора, аккумуляторной или солнечной батареей.
  • Достаточное количество свободных заряженных частиц в проводнике;
  • Электрическое поле, создаваемое источником питания и являющееся той сторонней силой, которая упорядочивает движение зарядов в проводнике и цепи;
  • Замкнутая цепь, концы которой подключены к полюсам источника питания.

Только наличие всех данных условий гарантирует, что такое явление, как электрический ток, будет длительно протекать в той или иной цепи, запитывая различных потребителей.

Электрический ток в разных средах

В металлах

В металлах протекание тока происходит, благодаря движению таких отрицательно заряженных частиц, как электроны. При подключении к проводнику из меди, алюминия источника питания данные частицы движутся от его отрицательного полюса к положительному или от фазы к нулю.

Медные проводники

В полупроводниках

В полупроводниках (кремний, германий) основными носителями зарядов являются отрицательно заряженные электроны и обладающие положительным зарядом «дырки». Избыток электронов образуется при введении в материал донорной примеси n-типа с большим, по сравнению с исходным веществом, количеством электронов на внешнем электронном уровне. Образование «дырок» происходит при введении в исходный полупроводник вещества с меньшим количеством электронов на внешнем электронном уровне – акцепторной примеси p-типа.

Протекание тока осуществимо в материалах на примере самой простой полупроводниковой радиодетали (диода), состоящей из двух пластинок кремния с введенными в них примесями n и p-типа. При этом пластинка с примесью n-типа называется катод, p-типа – анод.

Диод

При подключении к катоду отрицательного полюса источника питания, а к аноду – положительного, вследствие притяжения электронов из области n-типа плюсом батареи в цепи начнет протекать ток. При подключении питания к диоду в обратной полярности ток протекать не будет – электроны катода будут притягиваться к положительному полюсу батареи, «дырки» анода – к отрицательному.

В вакууме и газе

В обычном состоянии газы являются типичными диэлектриками. Однако при воздействии на газ высокой температуры, ультрафиолетового или рентгеновского излучения он подвергается ионизации – находящиеся в нем атомы теряют свои электроны или притягивают (захватывают) их из соседних атомов. Вследствие данного эндотермического процесса атомы газа теряют свою электронейтральность, и из них образуются такие носители зарядов, как ионы (анионы – отрицательно заряженные и катионы – положительно заряженные).Сам газ в таком состоянии называется плазмой.

Плазма

В жидкости

В жидкостях, обладающих электрической проводимостью (электролитах), основными носителями зарядов являются ионы, образующиеся при электролитической диссоциации солей.

Законы электрического тока

Основными законами электротехники являются такие всем известные из курса школьной физики постулаты, как:

  • Закон Ома;
  • Закон Фарадея;
  • Закон Джоуля-Ленца.

Опасность электрического тока

Помимо полезных свойств, ток – это также достаточно опасное для человеческого здоровья и жизни явление. Так, при соприкосновении с оголенным проводником, в котором величина силы тока свыше 0,1 Аи напряжения – 100 В, возможны серьезные электротравмы, повреждения внутренних органов и даже остановка сердца. Поэтому перед началом работ на не обесточенном по каким-либо причинам участке цепи характеристики протекающего по нему электротока должны в обязательном порядке измеряться, чтобы разумно оценивать последствия поражения током при контакте с токопроводящей поверхностью.

На заметку. При работе на электроустановках необходимо знать, как называются предупреждающие знаки электрической безопасности. Это нужно для того, чтобы ориентироваться в том, насколько опасна работа на том или ином участке цепи в случае его вынужденного или случайного нахождения под напряжением.

Таким образом, знание природы и сути такого явления, как электрический ток (сокращенно эл ток это), позволяет не только понять, как он протекает по тем или иным веществам, но и осознать опасность данного явления для человеческого здоровья при неаккуратном обращении с находящимися под напряжением проводниками, вышедшими из строя электроприборами.

Видео

Источник