Меню

Что происходит при уменьшение силы тока в катушке

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Читайте также:  Задача магнитный момент рамки с током

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник

§ 41. Явление самоиндукции

Рассмотрим частный случай электромагнитной индукции: возникновение индукционного тока в катушке при изменении силы тока в ней.

Для этого проведём опыт, изображённый на рисунке 128, а и схеме 128, б. При выполнении первой части опыта неоновая лампа Лн нам не понадобится, поэтому вынем её из патрона, оставив только две параллельные ветви: с реостатом Р и катушкой К. (Обратите внимание на условное обозначение катушки с сердечником на схеме 128, б и запомните его.)

Возникновение индукционного тока в катушке при изменении силы тока в ней при замыкании цепи

Рис. 128. Возникновение индукционного тока в катушке при изменении силы тока в ней при замыкании цепи

Замкнём цепь ключом Кл. Лампа Л1 загорится сразу, а Л2 — с опозданием приблизительно в 1 с. Причина запаздывания заключается в следующем. При замыкании цепи силы токов I, I1 и I2 (см. рис. 128, б) начинают расти. Благодаря этому увеличиваются индукции B1 и В2 магнитных полей (создаваемых этими же токами I1 и I2) и магнитные потоки Ф1 и Ф2, пронизывающие соответственно витки реостата и катушки. Получается, что проходящие сквозь реостат и катушку переменные потоки Ф1 и Ф2 создаются не внешними причинами (как было в опытах, рассмотренных в § 39), а благодаря изменению токов в самих этих устройствах.

Согласно явлению электромагнитной индукции, в реостате и в катушке возникают индукционные токи. Они препятствуют увеличению силы тока I1 и I2 (это следует из правила Ленца и правила правой руки). Но в катушке К индукционный ток будет значительно больше, чем в реостате Р, так как катушка имеет гораздо большее число витков и сердечник, т. е. обладает большей индуктивностью, чем реостат.

Читайте также:  Авббшв 3х35 допустимый ток

Индуктивность (коэффициент самоиндукции) — это физическая величина, введённая для оценивания способности катушки противодействовать изменению силы тока в ней. Индуктивность L катушки зависит от её формы, размеров, числа витков и наличия или отсутствия сердечника (например, железного). Единица индуктивности в СИ — генри (Тн).

Чем больше сила индукционного тока, тем большее противодействие он оказывает изменению силы тока, созданного источником. Поэтому ток в ветви с катушкой возрастает медленнее, чем в ветви с реостатом, и лампа Л2 загорается с опозданием (рис. 128, в).

Теперь посмотрим, что будет происходить при размыкании цепи. Для этого неоновую лампу Лн поместим в патрон, а лампу Л1 вывинтим, разомкнув тем самым участок цепи с реостатом (рис. 129).

Демонстрация явления самоиндукции при размыкании цепи

Рис. 129. Демонстрация явления самоиндукции при размыкании цепи

При замыкании цепи загорится только лампа Л2. Неоновая лампа не включается потому, что напряжение, необходимое для её зажигания, значительно больше напряжения, подаваемого от источника тока.

Теперь разомкнём цепь — лампа накаливания гаснет, зато неоновая даёт яркую кратковременную вспышку. Значит, уменьшение тока при размыкании цепи создаёт настолько мощный индукционный ток, противодействующий уменьшению тока в катушке, что напряжение на ней оказывается достаточным для зажигания лампы (и значительно превышающим напряжение источника!).

В проделанном опыте мы наблюдали явление самоиндукции.

Явление самоиндукции заключается в возникновении индукционного тока в катушке при изменении силы тока в ней. При этом возникающий индукционный ток называется током самоиндукции.

Конечно, ток самоиндукции возникает не только в катушках, но и в любых других проводниках, если сила тока изменяется. Но, как уже отмечалось, в катушках с относительно небольшим числом витков, не имеющих сердечника, и тем более в прямых проводниках (т. е. в элементах цепи, обладающих малой индуктивностью) ток самоиндукции обычно невелик и не оказывает существенного влияния на процессы в электрической цепи.

Появление мощного индукционного тока при размыкании цепи свидетельствует о том, что магнитное поле тока в катушке обладает энергией. Именно за счёт уменьшения энергии магнитного поля совершается работа по созданию индукционного тока. А накопилась эта энергия раньше, при замыкании цепи, когда за счёт энергии источника тока совершалась работа по преодолению тока самоиндукции, препятствующего увеличению тока в цепи, и его магнитного поля.

Энергия магнитного поля тока определяется по формуле

где L — индуктивность проводника, i сила тока в этом проводнике.

Вопросы

  1. Какое явление изучалось на опыте, представленном на рисунках 128 и 129?
  2. Расскажите о ходе каждой части опыта. Объясните наблюдаемые явления.
  3. В чём заключается явление самоиндукции?
  4. Может ли возникнуть ток самоиндукции в прямом проводнике с током? Если нет, то объясните почему; если да, то при каком условии.
  5. За счёт уменьшения какой энергии совершалась работа по созданию индукционного тока при размыкании цепи?

Упражнение 38

В электрической цепи (рис. 130) напряжение, получаемое от источника тока, меньше напряжения зажигания неоновой лампы.

Рис. 130

Как будет себя вести неоновая лампа при замыкании и размыкании ключа?

Что будет происходить с каждым элементом цепи (исключая источник тока и ключ) при замкнутом ключе; при замыкании ключа; при размыкании ключа?

Источник



Что происходит при уменьшение силы тока в катушке

Факторы, влияющие на индуктивность катушки

На индуктивность катушки оказывают влияние следующие основные факторы:

Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности ; уменьшение числа витков приводит к уменьшению индуктивности.

Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.

inductivnost17

Площадь поперечного сечения катушки: При прочих равных условиях , катушка с большей площадью поперечного сечения будет иметь большую индуктивность ; а катушка с меньшей площадью поперечного сечения — меньшую индуктивность.

Пояснение: Катушка с б ольшей площадью поперечного сечения оказывает меньшее сопротивление формированию магнитного потока для заданной величины магнитодвижущей силы .

inductivnost18

Длина катушки: При прочих равных условиях, чем больше длина катушки, тем меньше ее индуктивность; чем меньше длина катушки, тем больше ее индуктивность.

Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.

inductivnost19

Материал сердечника: При прочих равных условиях, чем больше магнитная проницаемость сердечника, вокруг которого намотана катушка, тем больше индуктивность; чем меньше магнитная проницаемость сердечника — тем меньше индуктивность.

Пояснение: Материал сердечника с большей магнитной проницаемостью способствует формированию большего магнитного потока для заданной величины магнитодвижущей силы.

inductivnost20

Приблизительное значение индуктивности любой катушки можно найти по следующей формуле:

inductivnost21

Следует понимать , что данная формула дает только приблизительные цифры . Одной из причин такого положения дел является изменение величины магнитной проницаемости при изменении напряженности магнитного поля (вспомните нелинейность кривой В/Н для разных материалов). Очевидно, если проницаемость (µ) в уравнении будет непостоянна, то и индуктивность (L) также будет в некоторой степени непостоянна. Если гистерезис материала сердечника будет существенным, то это непременно отразится на индуктивности катушки. Разработчики катушек индуктивности пытаются минимизировать эти эффекты, проектируя сердечник таким образом, чтобы его намагниченность никогда не приближалась к уровням насыщения, и катушка работала в более линейной части кривой B/H.

Если катушку сделать таким образом, что любой из вышеперечисленных факторов у нее можно механически изменить, то получится катушка с регулируемой величиной индуктивности или вариометр. Наиболее часто встречаются вариометры, индуктивность которых регулируется количеством витков или положением сердечника (который перемещается внутри катушки). Пример вариометра с изменяемым количеством витков можно увидеть на следующей фотографии:

Читайте также:  Рил ток это что такое

inductivnost22

Это устройство использует подвижные медные контакты , которые подключаются к катушке в различных точках ее длины. Подобные катушки, имеющие воздушный сердечник, применялись в разработке самых первых радиоприемных устройств.

Катушка с фиксированными значениями индуктивности, показанная на следующей фотографии, представляет собой еще одно раритетное устройство, использовавшееся в первых радиостанциях. Здесь вы можете увидеть несколько витков относительно толстого провода, а так же соединительные выводы:

inductivnost23

А это еще одна катушка индуктивности, так же предназначенная для радиостанций. Для большей жесткости ее провод намотан на керамический каркас:

inductivnost24

Многие катушки индуктивности обладают небольшими размерами, что позволяет монтировать их непосредственно на печатные платы. Посмотрев внимательно на следующую фотографию, можно увидеть две расположенные рядом катушки:

inductivnost25

Две катушки индуктивности расположены справа в центре этой платы и имеют обозначения L1 и L2. В непосредственной близости от них находятся резистор R3 и конденсатор С16. Показанные на плате катушки называются «торроидальными», так как их провод намотан вокруг сердечника, имеющего форму тора.

Как резисторы и конденсаторы, катушки индуктивности могут выполняться в корпусе для поверхностного монтажа (SMD). На следующей фотографии представлено несколько таких катушек:

inductivnost26

Две индуктивности здесь расположены справа в центре платы. Они представляют собой маленькие черные чипы с номером «100», а над одной из них можно увидеть обозначение L5.

Источник

Способы влияния на магнитные силы катушки

Однако, оказалось, что катушка с током имеет и другие замечательные свойства. Чем из большего количества витков состоит катушка, тем сильнее становится магнитное поле. Это позволяет собирать магниты различной силы действия. Однако есть более простые способы воздействия на величину магнитного поля.

Так, при увеличении силы тока в проводах катушки возрастает сила магнитного поля, и, наоборот, при уменьшении силы тока, магнитное поле ослабевает. То есть, при элементарном подключении реостата, мы получаем регулируемый магнит.

Магнитное поле катушки с током можно значительно усилить, введя внутрь спирали железный стержень. Он называется сердечником. Применение сердечника позволяет создавать очень мощные магниты. Например, в производстве используют магниты, способные поднимать и удерживать несколько десятков тонн веса. Это достигается следующим образом.

Сердечник изгибают в виде дуги, а на два его конца надевают две катушки, по которым пускают ток. Катушки соединяют проводами 4е так, что их полюса совпадают. Сердечник усиливает их магнитное поле. Снизу к этой конструкции подводят пластину с крюком, на который подвешивают груз. Подобные устройства используют на заводах и в портах для того, чтобы перемещать грузы очень большого веса. Эти грузы легко подсоединяются и отсоединяются при включении и отключении тока в катушках.

Если проводник, по которому проходит электрический ток, внести в магнитное поле, то в результате взаимодействия магнитного поля и проводника с током проводник будет перемещаться в ту или иную сторону.
Направление перемещения проводника зависит от направления тока в нем и от направления магнитных линий поля.

Допустим, что в магнитном поле магнита NS находится проводник, расположенный перпендикулярно плоскости рисунка; по проводнику протекает ток в направлении от нас за плоскость рисунка.

Ток, идущий от плоскости рисунка к наблюдателю, обозначается условно точкой, а ток, направляющийся за плоскость рисунка от наблюдателя,— крестом.

Движение проводника с током в магнитном поле
1 — магнитное поле полюсов и тока проводника,
2 — результирующее магнитное поле.

Всегда всё уходящее на изображениях обозначается крестом,
а направленное на смотрящего — точкой.

Под действием тока вокруг проводника образуется свое магнитное поле рис.1.
Применяя правило буравчика, легко убедиться, что в рассматриваемом нами случае направление магнитных линий этого поля совпадает с направлением движения часовой стрелки.

При взаимодействии магнитного поля магнита и поля, созданного током, образуется результирующее магнитное поле, изображенное на рис.2.
Густота магнитных линий результирующего поля с обеих сторон проводника различна. Справа от проводника магнитные поля, имея одинаковое направление, складываются, а слева, будучи направленными встречно, частично взаимно уничтожаются.

Следовательно, на проводник будет действовать сила, большая справа и меньшая слева. Под действием большей силы проводник будет перемещаться по направлению силы F.

Перемена направления тока в проводнике изменит направление магнитных линий вокруг него, вследствие чего изменится и направление перемещения проводника.

Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:

Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.

Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.

Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В. Единицей измерения магнитной индукции является тесла (Тл=Вс/м2).

О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А, расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н(ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).

Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.

Сила F, действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В, току в проводнике I и длине проводника l, т. е.
F=BIl.

Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a.
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так кака=0.

Источник