Меню

Датчик тока напряжения выходное напряжение

Датчики тока и датчики напряжения

date image2015-04-12
views image9657

facebook icon vkontakte icon twitter icon odnoklasniki icon

Датчики тока и датчики напряжения осуществляют преобразование текущих значений тока и, соответственно, напряжения (в контролируемой цепи) в электрический сигнал, у которого носителем информации обычно является напряжение. В датчиках может предусматриваться гальваническая развязка выходной (слаботочной) цепи от входной (силовой) цепи, а также нормирование сигнала (приведение его значений к определенной области, например, к напряжению из диапазона 0…10 В). В состав такого датчика входят следующие функциональные части: чувствительный элемент (первичный измерительный преобразователь), устройство гальванической развязки (потенциальный разделитель), усилительные устройства. Обобщенная структурная схема датчика тока и датчика напряжения показана на рис. 8.22.

На схеме обозначены:

ЧЭ – чувствительный элемент (первичный измерительный преобразователь – шунт, трансформатор тока в датчиках тока; делитель напряжения, измерительный трансформатор напряжения в датчиках напряжения);

ВУ – входной усилитель;

ПР – потенциальный разделитель;

НУ – нормирующий усилитель;

ЭЦ – контролируемая датчиком электрическая цепь;

ПИ – приемник информации (например регулятор системы управления автоматизированного электропривода).

Подключение чувствительных элементов к электрической цепи с нагрузкой (RH, ZH) показано на рис. 8.23.

Шунт (RШ на рис. 8.23а) представляет собой резистор с двумя токовыми и двумя потенциальными зажимами. С помощью токовых зажимов шунт подключают в разрыв (рассечку) контролируемой цепи. Напряжение, пропорциональное току контролируемой цепи, с потенциальных зажимов шунта подается на входной усилитель (ВУ) датчика тока и усиливается им в 100…200 раз. Линейная зависимость напряжения от тока обеспечивается при большом входном сопротивлении ВУ.

Классы точности шунтов: 0,02; 0,05; 0,1; 0,2; 05. Номинальные токи в пределах от 0,5 А до 7500 А. Номинальное падение напряжения на шунте составляет 75 мВ (это напряжение между потенциальными зажимами, когда по шунту протекает ток, равный номинальному току шунта).

Делитель напряжения в виде последовательного соединения резисторов R1 и R2 (рис. 8.23а) подключают под полное контролируемое напряжение. Выходное напряжение делителя, пропорциональное контролируемому напряжению, снимается с резистора R2. ВУ исполняет роль согласующего элемента, обладая высоким входным сопротивлением.

Измерительный трансформатор переменного тока (ТА) применяют вместо шунта (рис. 8.23б), что позволяет: уменьшить потери энергии, возникающие в процессе ее преобразования; реализовать гальваническую развязку между цепями; повысить безопасность эксплуатации; уменьшить габариты и массу датчика. Режим работы выбирают близким к режиму короткого замыкания (разрыв вторичной цепи приводит к аварийному режиму). Усилитель (ВУ) с малым входным сопротивлением подключают к вторичной цепи трансформатора тока через выпрямитель.

Трансформаторы тока изготовляют на номинальные первичные токи в диапазоне от 0,1 А до 40000 А. Вторичные номинальные токи могут иметь значения 1,2; 2,5; 5 А. Классы точности: 0,2; 0,5; 1; 3.

Измерительный трансформатор напряжения (TV на рис. 8.23б) работает в режиме близком к режиму холостого хода. Он понижает контролируемое переменное напряжение и гальванически развязывает электрические цепи. Сигнал, снимаемый с вторичной обмотки трансформатора, через выпрямитель подается на усилитель (ВУ) с большим входным сопротивлением.

Характеристики управления рассмотренных чувствительных элементов считают линейными в практических приложениях. Зависимость выходной переменной u1 от входной переменной u определяют через номинальный коэффициент преобразования kЧЭном=u1ном/uном , где «ном» означает номинальное значение соответствующего параметра. Тогда

Измерительный трансформатор постоянного тока, выполненный на основе магнитного усилителя (см. [1] п. 5.3), применяют для измерения постоянных токов свыше 5000 А. Использование шунтов в таких случаях нецелесообразно, так как шунты получаются весьма громоздкими и дорогими.

Обмотка управления wy магнитного усилителя А подключается в разрыв контролируемой цепи, по которой протекает постоянный ток I (рис. 8.24). Она состоит из одного витка провода. Рабочие обмотки wp получают питание от источника переменного напряжения

Среднее значение напряжения на выходе выпрямителя UZ линейно зависит от тока I при I

Источник

Датчик тока

Содержание

Датчик тока предназначен для того, чтобы передать в систему автоматического управления сигнал, пропорциональный току, протекающему в силовой цепи или для преобразования тока до значения, удобного для измерения.

В настоящее время примерно 15 % всех электроприводов имеют инверторное управление, и это управление позволяет сэкономить до 50 % всей расходуемой электроэнергии. Однако векторное управление невозможно без контроля тока, напряжения и магнитного поля.

Наиболее распространенными сегодня способами измерения тока являются три метода:

  • метод прямого измерения с помощью токоизмерительного шунта;
  • косвенный метод с помощью трансформатора тока;
  • метод, основанный на основе эффекта Холла.

Метод прямого измерения – это наиболее часто применяемый метод, что объясняется простотой его использования и дешевизной. Прямое измерение тока обеспечивается включением в схему токочувствительного резистора (шунта), который имеет стабильный температурный коэффициент (ТКС менее 0,01 %).

Графическое изображение шунта представлено на рисунке 2.89 а , схема подключения – на рисунке 2.89 б.

Токовый шунт

Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами. В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.

Шунт, представленные на рисунке, имеет наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Шунт подключается последовательно в цепь через токовые зажимы. Измерительный механизм присоединяют к потенциальным зажимам, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Наружные шунты обычно выполняются калиброванными, т е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ. Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения. Большинство измерительных головок для шунтов откалибровано на напряжение в 75мВ.

Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

  • простота контракции;
  • хорошая линейность;
  • способность измерять постоянный и переменные токи;
  • отсутствие необходимости внешнего источника питания.
  • отсутствие гальванической развязки;
  • вносимые в цепь измерений потери;
  • при низких токах шунт должен иметь высокое сопротивление, чтобы падение напряжения на нем имело достаточную величину, что приводит к необходимости применения усилителя;
  • наличие паразитной индуктивности у большинства мощных резисторов приводит к ограничению полосы пропускания данного метода.
Читайте также:  Длительно допустимый ток для кабелей с пластмассовой изоляцией

В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях трансформаторов тока сердечник выполняется из нанокристаллических (аморфных) сплавов, для расширения диапазона, в котором трансформатор работает в классе точности.

Вторичные обмотки трансформатора тока обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода, трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой, имеет очень высокое значение и потери в магнитопроводе сильно нагревают его.

Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10–15–50–100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих – синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери, связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле, соотношений витков первичной и вторичной обмоток.

Графическое изображение трансформаторов тока представлено на рисунке 2.90 а , на рисунке 2.90 б – схема включения.

Трансформатор тока

Аналогичный метод измерений используется в датчиках, получивших название «пояс Роговского». Различие только в том, что «пояс Роговского» не имеет сердечника и поэтому его индуктивность меньше, чем у трансформаторов тока.

  • наличие гальваническая развязка с высоким пробивным напряжением;
  • может измерять токи в несколько кА;
  • высокая точность измерений.
  • работают на сетевой частоте и не могут использоваться в цепях постоянного тока;
  • изменяет фазу сигнала и требует компенсации.

Датчики на основе эффекта Холла

Датчики компенсационного типа и датчики прямого усиления основаны на использовании эффекта Холла, Генераторы Холла обладают определенной зависимостью чувствительности и начального выходного напряжения от температуры, тем не менее, эта зависимость может быть значительно компенсирована электронной схемой датчика тока.

Датчики прямого усиления используют эффект Холла. Магнитная индукция В и напряжение Холла, создаются измеряемым первичным током IP, который необходимо преобразовать в выходной ток датчика. Ток управления подается с помощью стабилизированного источника тока.

При создании датчика тока открытого типа берется магнитопровод, пропускается через него провод измеряемой цепи и в разрез магнитопровода помещается датчик Холла (рисунок 2.91).

Датчик тока на эффекте Холла открытого типа

Достоинством такого датчика является относительная простота. Недостатком – наличие подмагничивания сердечника, следовательно, повышение нелинейности показаний.

Датчики прямого усиления позволяют измерять номинальные токи от нескольких ампер до нескольких сотен килоампер с общей точностью в несколько процентов от номинального значения.

Датчики прямого усиления способны измерять постоянный, переменный ток и токи других форм с гальванической изоляцией. Они отличаются низкой потребляемой мощностью и уменьшенными геометрическими размерами, а также относительно небольшим весом, в особенности для диапазона больших токов. Они обеспечивают отсутствие внутренних потерь в измеряемой цепи и особенно устойчивы к перегрузкам. Эти датчики сравнительно недороги и в основном применяются в промышленности.

Датчики компенсационного типа , (также называемые датчиками с нулевым потоком) имеют встроенную компенсационную цепь, с помощью которой характеристики датчиков тока, использующих эффект Холла, могут быть существенно улучшены.

В то время как датчики прямого усиления дают выход напряжения, пропорциональный увеличенному напряжению Холла, компенсационные датчики обеспечивают выходной ток, пропорциональный напряжению Холла, который действует как сигнал обратной связи, чтобы компенсировать магнитное поле, создаваемое первичным током, магнитным полем, создаваемым полем выходного тока (рисунок 2.92).

Датчик тока на эффекте Холла компенсационного типа

Диапазон компенсационных датчиков позволяет измерять номинальные токи от нескольких ампер до нескольких сотен килоампер с точностью около 1 %.

Компенсационные датчики способны измерять постоянный ток, переменный ток и токи иной формы с гальванической развязкой.

Они выделяются следующим:

  • отличная точность;
  • очень хорошая линейность;
  • малый температурный дрейф;
  • очень быстрое время отклика и широкий частотный диапазон;
  • не приводят к дополнительным потерям в измерительной цепи.

Токовый выход этих датчиков особенно приспособлен к применению при наличии помех окружающей среды. При необходимости очень легко преобразовать сигнал датчика в напряжение. Датчики выдерживают перегрузки тока без повреждений. Эти датчики особенно хорошо подходят к промышленному применению, когда требуется высокая точность и широкий частотный диапазон. Основным недостатком этой технологии является потребление мощности на компенсацию тока. Кроме того, для диапазона высоких токов эти датчики более дорогие и имеют большие габариты по сравнению с аналогичными датчиками прямого усиления. Несмотря на это, датчики компенсационного типа являются относительно дешевыми, особенно для диапазона малых токов.

  • широкий диапазон измеряемых токов с частотой до 50–100кГц и выше;
  • измеряет постоянный и переменный ток;
  • гальваническая развязка;
  • высокая точность;
  • низкий температурный дрейф;
  • линейность;
  • небольшие масса-габаритные показатели;
  • низкое энергопотребление.
  • высокая стоимость.
Читайте также:  Сварка высокопрочных сталей в нижнем положении электродом 4мм производят при силе сварочного тока

Литература

Элементы и функциональные устройства судовой автоматики — Авдеев Б.А. [2018]

Источник



Использование датчика тока ACS712. Часть 1 — Теория

Allegro ACS712

Измерение и контроль протекающего тока являются принципиальным требованием для широкого круга приложений, включая схемы защиты от перегрузки по току, зарядные устройства, импульсные источники питания, программируемые источники тока и пр. Один из простейших методов измерения тока –использование резистора с малым сопротивлением, – шунта между нагрузкой и общим проводом, падение напряжения на котором пропорционально протекающему току. Несмотря на то, что данный метод очень прост в реализации, точность измерений оставляет желать лучшего, т.к. сопротивление шунта зависит от температуры, которая не является постоянной. Кроме того, такой метод не позволяет организовать гальваническую развязку между нагрузкой и измерителем тока, что очень важно в приложениях, где нагрузка питается высоким напряжением.

Датчик тока Allegro ACS712

Основные недостатки измерения тока с помощью резистивного шунта:

  • нагрузка не имеет прямой связи с «землей»;
  • нелинейность измерений, обусловленная температурным дрейфом сопротивления резистора;
  • отсутствие гальванической развязки между нагрузкой и схемой измерения.

В статье мы рассмотрим экономичный и прецизионный интегральный датчик тока Allegro ACS712, принцип его работы, основанный на эффекте Холла, характеристики и способ подключения к микроконтроллеру для измерения постоянного тока. Статья разделена на две части: первая посвящена устройству и характеристикам датчика, вторая – интерфейсу с микроконтроллером и работе с датчиком.

Датчик тока ACS712 основан на принципе, открытом в 1879 году Эдвином Холлом (Edwin Hall), и названным его именем. Эффект Холла состоит в следующем: если проводник с током помещен в магнитное поле, то на его краях возникает ЭДС, направленная перпендикулярно, как к направлению тока, так и к направлению магнитного поля. Эффект иллюстрируется Рисунком 2. Через тонкую пластину полупроводникового материала, называемую элементом Холла, протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца, искривляющая траекторию движения электронов, что приводит к перераспределению объемных зарядов в элементе Холла. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает ЭДС, называемая ЭДС Холла. Эта ЭДС пропорциональна векторному произведению индукции B на плотность тока I и имеет типовое значение порядка нескольких микровольт.

Микросхема ACS712 выпускается в миниатюрном 8-выводном корпусе SOIC для поверхностного монтажа (Рисунок 3). Она состоит из прецизионного линейного датчика Холла с малым напряжением смещения и медного проводника, проходящего у поверхности чипа и выполняющего роль сигнального пути для тока (Рисунок 4). Протекающий через этот проводник ток, создает магнитное поле, воспринимаемое встроенным в кристалл элементом Холла. Сила магнитного поля линейно зависит от проходящего тока. Встроенный формирователь сигнала фильтрует создаваемое чувствительным элементом напряжение и усиливает его до уровня, который может быть измерен с помощью АЦП микроконтроллера.

Микросхема ACS712 в корпусе SOIC

Внутренняя конструкция датчика тока ACS712

На Рисунке 5 показано расположение выводов ACS712 и типовая схема его включения. Выводы 1, 2 и 3,4 образуют проводящий путь для измеряемого тока с внутренним сопротивлением порядка 1.2 мОм, что определяет очень малые потери мощности. Его толщина выбрана такой, чтобы прибор выдерживал силу тока в пять раз превышающую максимально допустимое значение. Контакты силового проводника электрически изолированы от выводов датчика (выводы 5 – 8). Расчетная прочность изоляции составляет 2.1 кВ с.к.з.

В низкочастотных приложениях часто требуется включить на выходе устройства простой RC фильтр, чтобы улучшить отношение сигнал-шум. ACS712 содержит внутренний резистор RF, соединяющий выход встроенного усилителя сигнала со входом выходной буферной схемы (см. Рисунок 6). Один из выводов резистора доступен на выводе 6 микросхемы, к которому подключается внешний конденсатор CF. Следует отметить, что использование конденсатора фильтра приводит к увеличению времени нарастания выходного сигнала датчика и, следовательно, ограничивает полосу пропускания входного сигнала. Максимальная полоса пропускания составляет 80 кГц при емкости фильтрующего конденсатора равной нулю. С ростом емкости CF полоса пропускания уменьшается. Для снижения уровеня шума при номинальных условиях рекомендуется устанавливать конденсатор CF емкостью 1 нФ.

Чувствительность и выходное напряжение ACS712

Выходное напряжение датчика пропорционально току, протекающему через проводящий путь (от выводов 1 и 2 к выводам 3 и 4). Выпускается три варианта токового датчика для разных диапазонов измерения:

  • ±5 А (ACS712-05B),
  • ±20 А (ACS712-20B),
  • ±30 А (ACS712-30A)

Соответствующие уровни чувствительности составляют 185 мВ/А, 100 мА/В и 66 мВ/A. При нулевом токе, протекающем через датчик, выходное напряжение равно половине напряжения питания (Vcc/2). Необходимо заметить, что выходное напряжение при нулевом токе и чувствительность ACS712 пропорциональны напряжению питания. Это особенно полезно при использовании датчика совместно с АЦП.

Точность любого АЦП зависит от стабильности источника опорного напряжения. В большинстве схем на микроконтроллерах в качестве опорного используется напряжение питания. Поэтому при нестабильном напряжении питания измерения не могут быть точными. Однако если опорным напряжением АЦП сделать напряжение питания датчика ACS712, его выходное напряжение будет компенсировать любые ошибки аналого-цифрового преобразования, обусловленные флуктуациями опорного напряжения.

Рассмотрим эту ситуацию на конкретном примере. Допустим, что для опорного напряжения АЦП и питания датчика ACS712 используется общий источник Vcc = 5.0 В. При нулевом токе через датчик его выходное напряжение составит Vcc/2 = 2.5 В. Если АЦП 10-разрядный (0…1023), то преобразованному выходному напряжению датчика будет соответствовать число 512. Теперь предположим, что вследствие дрейфа напряжение источника питания установилось на уровне 4.5 В. Соответственно, на выходе датчика будет 4.5 В/2 = 2.25 В, но результатом преобразования, все равно, будет число 512, так как опорное напряжение АЦП тоже снизилось до 4.5 В. Точно также, и чувствительность датчика снизится в 4.5/5 = 0.9 раз, составив 166.5 мВ/А вместо 185 мВ/А. Как видите, любые колебания опорного напряжения не будут источником ошибок при аналого-цифровом преобразовании выходного напряжения датчика ACS712.

Читайте также:  Разряд током при реанимации

На Рисунке 7 представлены номинальные передаточные характеристики датчика ACS712-05B при напряжении питания 5.0 В. Дрейф выходного напряжения в рабочем диапазоне температур минимален благодаря инновационной технологии стабилизации.

Часть 2 — Подключение датчика к микроконтроллеру и работа с ним

Перевод: Vadim по заказу РадиоЛоцман

Источник

Датчик тока

Для того чтобы успешно автоматизировать различные технологические процессы, эффективно управлять приборами, устройствами, машинами и механизмами, нужно постоянно измерять и контролировать множество параметров и физических величин. Поэтому неотъемлемой частью автоматических систем стали датчики, обеспечивающие получение информации о состоянии контролируемых устройств.

  1. Классификация датчиков
  2. Принцип действия
  3. Основные виды датчиков тока
  4. Датчики прямого усиления (O/L)
  5. Датчики тока (Eta)
  6. Датчики тока компенсационные (C/L)
  7. Датчики тока компенсационные (тип С)
  8. Датчики тока PRIME
  9. Датчики тока (тип IT)
  10. Преимущества датчиков тока в современных схемах

Классификация датчиков

По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов. С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы. Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.

Датчик тока

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.

Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Принцип действия

По принципу работы все датчики разделяются на два основных вида. Они могут быть генераторными – непосредственно преобразующими входные величины в электрический сигнал. К параметрическим датчикам относятся устройства, преобразующие входные величины в измененные электрические параметры самого датчика. Кроме того, они могут быть реостатными, омическими, фотоэлектрическими или оптико-электронными, емкостными, индуктивными и т.д.

К работе всех датчиков предъявляются определенные требования. В каждом устройстве входная и выходная величина должны находиться в непосредственной зависимости между собой. Все характеристики должны быть стабильными во времени. Как правило эти приборы отличаются высокой чувствительностью, небольшими размерами и массой. Они могут работать в самых разных условиях и устанавливаться различными способами.

Основные виды датчиков тока

Датчиками тока являются устройства, с помощью которых определяется сила постоянного или переменного тока в электрических цепях. В их конструкцию входят магнитопровод с зазором и компенсационной обмоткой, датчик Холла, а также электронная плата, выполняющая обработку электрических сигналов. Основным чувствительным элементом служит датчик Холла, закрепляемый в зазоре магнитопровода и соединяемый со входом усилителя.

Принцип действия в целом одинаковый для всех подобных устройств. Под действием измеряемого тока возникает магнитное поле, затем, с помощью датчика Холла осуществляется выработка соответствующего напряжения. Далее это напряжение усиливается на выходе и подается на выходную обмотку.

Датчики прямого усиления (O/L)

Обладают небольшими размерами и массой, низким энергопотреблением. Диапазон преобразований сигналов существенно расширен. Позволяет избежать потерь в первичной цепи. Работа устройства базируется на магнитном поле, которое создает первичный ток Ip. Далее происходит концентрация магнитного поля в магнитной цепи и его дальнейшее преобразование элементом Холла в воздушном зазоре. Сигнал, полученный с элемента Холла усиливается и на выходе образуется пропорциональная копия первичного тока.

Датчики тока (Eta)

Характеризуются широким диапазоном частот и расширенным диапазоном преобразований. Преимуществами данных устройств является низкое энергопотребление и незначительное время задержки. Работа устройства поддерживается однополярным питанием от 0 до +5 вольт. Действие прибора основано на комбинированной технологии, в которой используется компенсационный тип и прямое усиление. Это способствует существенному улучшению характеристик датчика и более сбалансированному функционированию.

Датчики тока компенсационные (C/L)

Отличаются широким диапазоном частот, высокой точностью и малым временем задержки. У приборов этого типа отсутствуют потери первичного сигнала, у них отличные характеристики линейности и низкий температурный дрейф. Компенсация магнитного поля, создаваемого первичным током Ip, происходит за счет такого же поля, образующегося во вторичной обмотке. Генерация вторичного компенсирующего тока осуществляется элементом Холла и электроникой самого датчика. В конечном итоге, вторичный ток представляет собой пропорциональную копию первичного тока.

Датчики тока компенсационные (тип С)

Несомненными достоинствами этих приборов является широкий диапазон частот, высокая точность информации, отличная линейность и сниженный температурный дрейф. Кроме того, данные приборы могут измерять дифференциальные токи (CD). Они обладают высокими уровнями изоляции и пониженным влиянием на первичный сигнал. Конструкция состоит из двух тороидальных магнитопроводов и двух вторичных обмоток. В основе работы датчиков лежит компенсация ампер-витков. Ток с небольшим значением из первичной цепи проходит через первичный резистор и первичную обмотку.

Датчики тока PRIME

Для преобразования переменного тока используется широкий динамический диапазон. Прибор отличается хорошей линейностью, незначительными температурными потерями и отсутствием магнитного насыщения. Преимуществом конструкции являются небольшие габариты и вес, высокая устойчивость к различным видам перегрузок. Точность показаний не зависит от того как в отверстии расположен кабель и не подвержена влиянию внешних полей. В этом датчике используется не традиционная разомкнутая катушка, а измерительная головка с сенсорными печатными платами.

Каждая плата состоит из двух раздельных катушек с воздушными сердечниками. Все они смонтированы на единую базовую печатную плату. Из сенсорных плат формируются два концентрических контура, на выходах которых суммируется наведенное напряжение. В результате, получается информация о параметрах амплитуды и фазы измеряемого тока.

Источник