Меню

Электронный выключатель постоянного тока

Автоматические выключатели постоянного тока: что это такое и где они применяются?

Многие знают из школьного курса физики, что ток бывает переменным и постоянным. Если о применении переменного тока мы еще что-то можем с уверенностью сказать (все бытовые электроприемники питаются от переменного тока), то о постоянном мы не знаем практически ничего. Но раз существуют сети постоянного тока, значит есть и потребители, и соотвественно защита таким сетям тоже нужна. Где встречаются потребители постоянного тока и в чем отличие аппаратов защиты для этого рода тока мы рассмотрим в этой статье.

Ни один из типов электрического тока не «лучше», чем другой — каждый подходит для решения определенных задач: переменный ток идеален для генерации, передачи и распределения электроэнергии на большие расстояния, в то время как постоянный ток находит свое применение на специальных промышленных объектах, установках солнечной энергии, центрах обработки данных, электрических подстанциях и пр.

Шкаф распределения постоянного оперативного тока электрической подстанции

Понимание отличий переменного и постоянного тока дает четкое представление о задачах, с которыми сталкиваются автоматические выключатели постоянного тока. Переменный ток промышленной частоты (50 Гц) меняет свое направление в электрической цепи 50 раз в секунду и столько же раз «переходит» через нулевое значение. Этот «переход» значения тока через ноль способствует скорейшему гашению электрической дуги. В цепях постоянного тока значение напряжения постоянно — также как и направление тока постоянно во времени. Этот факт существенно затрудняет гашение дуги постоянного тока, и потому требует специальных конструкторских решений.

Совмещенные графики нормального и переходного режимов при отключении: а) переменного тока; б) постоянного тока.

Одно из таких решений — использование постоянного магнита (4). Движение дуги в магнитном поле является одним из способов гашения в аппаратах до 1 кВ и находит применение в модульных автоматических выключателях. На электрическую дугу, которая по своей сути является проводником, воздействует магнитное поле, и та затягивается в дугогасительную камеру, где окончательно затухает.

1 — подвижный контакт
2 — неподвижный контакт
3 — серебросодержащая контактная напайка
4 — магнит
5 — дугогасительная камера
6 — скоба

Полярность надо соблюдать

Еще одним и, пожалуй, ключевым отличием между автоматическими выключателями переменного и постоянного тока, является у последних наличие полярности.

Схемы подключения однополюсного и двухполюсного автоматического выключателя постоянного тока

Если вы защищаете однофазную сеть переменного тока при помощи двухполюсного автоматического выключателя (с двумя защищенными полюсами), то нет разницы в какой из полюсов подключать фазный или нулевой проводник. При подключении же в сеть постоянного тока автоматических выключателей необходимо соблюдать правильную полярность. При подключении однополюсного выключателя постоянного тока питающее напряжение подается на клемму «1», а при подключении двухполюсного — на клеммы «1» и «4».

Почему это так важно? Смотрите видео. Автор ролика проводит несколько тестов с 10-ти амперным выключателем:

1) Включение выключателя в сеть с соблюдением полярности — ничего не происходит.
2) Выключатель установлен в сеть обратной полярностью; параметры сети U=376 В, I=7,5 А. Как итог: сильное дымовыделение с последующим воспламенением выключателя.
3) Выключатель установлен с соблюдением полярности, а ток в цепи составляет 40 А, что в 4 раза превышает его номинал. Тепловая защита, как это и должно быть, разомкнула защищаемую цепь через несколько секунд.
4) Последний и самый жесткий тест проводился с таким же 4-х кратным превышением по току и обратной полярностью. Результат не заставил себя долго ждать — мгновенное воспламенение.

Этот ролик наглядно демонстрирует то, почему необходимо соблюдать полярность при подключении автоматических выключателей постоянного тока. Подключение с обратной полярностью, и с током цепи, не превышающим номинал автоматического выключателя, выводит его из строя. Во избежание повторения подобных «печальных опытов» производители маркируют клеммы выключателей «+» и «-», а также дают схемы подключения в руководствах по эксплуатации.

Таким образом, автоматические выключатели постоянного тока — это устройства защиты, применяемые для объектов альтернативной энергетики, систем автоматизации и управления промышленных процессов и пр. Специальные исполнения защитных характеристик Z, L, K позволяют защищать высокотехнологичное оборудование промышленных предприятий.

Для их электроустановки всегда рекомендуется пользоваться услугами квалифицированных инженеров и техников, чтобы убедиться, что соответствующие автоматические выключатели постоянного тока будут выбраны и установлены правильно.

Источник

Выключатели на транзисторах

Основное назначение транзисторных выключателей, схемы которых предлагаются вниманию читателей, — включение и выключение нагрузки постоянного тока. Кроме этого, он может выполнять ещё дополнительные функции, например, индициро­вать своё состояние, автоматически отключать нагрузку при раз­рядке аккумуляторной батареи до предельно допустимого значения или по сигналу датчиков температуры, освещённости и др. На базе нескольких выключателей можно сделать пере­ключатель. Коммутация тока осуществляется транзистором, а управление осуществляется одной простой кнопкой с контактом на замыкание. Каждое нажатие на кнопку изменяет состояние выключателя на противоположное.

Описание аналогичного выключате­ля было приведено в [1], нотам для управления применены две кнопки. К достоинствам предлагаемых выключа­телей можно отнести бесконтактное подключение нагрузки, практически отсутствие потребляемого тока в вы­ключенном состоянии, доступные эле­менты и возможность применения ма­логабаритной кнопки, занимающей ма­ло места на панели прибора. Недостат­ки — собственный потребляемый ток (несколько миллиампер) во включён­ном состоянии, падение напряжения на транзисторе (доли вольта), необходи­мость принятия мер для защиты от импульсных помех надёжного контакта во входной цепи (может самопроиз­вольно выключаться при кратковремен­ном нарушении контакта).

Читайте также:  Автоматический выключатель кривая с 1р 16а

Схема выключателя показана на рис. 1. Принцип его работы основан на том, что у открытого кремниевого тран­зистора напряжение на переходе база- эмиттер транзистора — 0,5…0,7 В, а на­пряжение насыщения коллектор-эмит­тер может быть 0,2…0,3 В. По сути, это устройство представляет собой триггер на транзисторах с разной структурой, управляемый одной кнопкой. После по­дачи питающего напряжения оба тран­зистора закрыты, а конденсатор С1 раз­ряжен. При нажатии на кнопку SB1 ток зарядки конденсатора С1 открывает транзистор VT1, и следом за ним откро­ется транзистор VT2. При отпускании кнопки транзисторы остаются во включённом состоянии, питающее напряже­ние (за вычетом падения напряжения на транзисторе ѴТ1) поступает на нагрузку и продолжится зарядка конденсатора С1. Он зарядится до напряжения, немно­гим большем, чем напряжение на базе этого транзистора, поскольку напряже­ние насыщения коллектор—эмиттер меньше напряжения база-эмиттер.

Поэтому при следующем нажатии на кнопку напряжение база-эмиттер на транзисторе ѴТ1 будет недостаточным для поддержания его в открытом со­стоянии и он закроется. Следом закроется транзистор VT2, и нагрузка обесточится. Конденсатор С1 разрядит­ся через нагрузку и резисторы R3—R5, и выключатель вернётся в исходное со­стояние. Максимальный коллекторный ток транзистора ѴТ1 Iк зависит от коэф­фициента передачи тока h21э и базового тока Іб: Iк = lб h2lэ. Для указанных на схеме номиналов и типов элементов этот ток — 100…150 мА. Чтобы выключатель рабо­тал нормально, ток, потребляемый на­грузкой, должен быть меньше этого зна­чения.

У этого выключателя есть две осо­бенности. Если на выходе выключателя будет короткое замыкание, после крат­ковременного нажатия на кнопку SB1 транзисторы на короткое время откро­ются и затем, после зарядки конденса­тора С1, закроются. При уменьшении выходного напряжения примерно до 1 В (зависит от сопротивлений резисторов R3 и R4) транзисторы также закроются, т. е. нагрузка будет обесточена.

Второе свойство выключателя можно использовать для построения разрядно­го устройства для отдельных Ni-Cd или Ni-Mh аккумуляторов до 1 В перед составлением их в батарею и дальней­шей общей зарядке. Схема устройства показана на рис. 2. Выключатель на транзисторах ѴТ1, ѴТ2 подключает к аккумулятору разрядный резистор R6, параллельно которому подключён пре­образователь напряжения [2], собран­ный на транзисторах ѴТЗ, ѴТ4, питающий светодиод HL1. Светодиод индицирует состояние процесса разрядки и являет­ся дополнительной нагрузкой аккумуля­тора. Резистором R8 можно изменять яркость свечения светодиода, вслед­ствие этого изменяется потребляемый им ток. Так можно производить коррек­тировку разрядного тока. По мере раз­рядки аккумулятора снижается напряже­ние на входе выключателя, а также на базе транзистора ѴТ2. Резисторы дели­теля в цепи базы этого транзистора по­добраны так, что при напряжении на вхо­де 1 В напряжение на базе уменьшится настолько, что транзистор ѴТ2 закроет­ся, а вслед за ним и транзистор ѴТ1 — разрядка прекратится. При указанных на схеме номиналах элементов интервал регулировки тока разрядки — 40…90 мА. Если резистор R6 исключить, разрядный ток можно менять в интервале от 10 до 50 мА. При использовании сверхъяркого светодиода это устройство можно при­менить для построения карманного фо­наря с защитой аккумулятора от глубо­кой разрядки.

На рис. 3 показано ещё одно приме­нение выключателя — таймер. Он был использован мною в портативном прибо­ре — испытателе оксидных конденсато­ров. В схему дополнительно введён све­тодиод HL1, который индицирует состоя­ние устройства. После включения заго­рается светодиод и конденсатор С2 на­чинает заряжаться обратным током дио­да VD1. При определённом напряжении на нём откроется транзистор ѴТ3, кото­рый закоротит эмиттерный переход транзистора ѴТ2, что приведёт к выклю­чению устройства (светодиод погаснет). Конденсатор С2 быстро разрядится че­рез диод VD1, резисторы R3, R4 и выклю­чатель вернётся в исходное состояние. Время выдержки зависит от ёмкости кон­денсатора С2 и обратного тока диода. При указанных на схеме элементах оно составляет около 2 мин. Если взамен конденсатора С2 установить фоторезис­тор, терморезистор (или другие датчи­ки), а взамен диода — резистор, получим устройство, которое будет выключаться при изменении освещённости, темпера­туры и т. п.

Читайте также:  Автоматический выключатель ekf c20

Если в нагрузке есть конденсаторы большой ёмкости, выключатель может не включиться (это зависит от их ёмкос­ти). Схема устройства, лишённого этого недостатка, показана на рис. 4. Добав­лен ещё один транзистор ѴТ1, который выполняет функцию ключа, а два других транзистора управляют этим ключом, чем исключается влияние нагрузки на работу выключателя. Но при этом поте­ряется свойство не включаться при наличии в цепи нагрузки короткого замыкания. Светодиод выполняет аналогичную функцию. При указан­ных на схеме номиналах деталей ток базы транзистора ѴТ1 — около 3 мА. Были опробованы несколько тран­зисторов КТ209К и КТ209В в качест­ве ключа. Они имели коэффициенты передачи тока базы от 140 до 170. При токе нагрузки 120 мА падение напряжения на транзисторах было 120…200 мВ. При токе 160 мА — 0,5…2,2 В. Использование в качест­ве ключа составного транзистора КТ973Б позволило значительно уве­личить допустимый ток нагрузки, но падение напряжения на нём было 750…850 мВ, и при токе 300 мА транзистор слабо грелся. В выключен­ном состоянии потребляемый ток на­столько мал, что измерить его с помо­щью мультиметра DT830B не удалось. При этом транзисторы предварительно не отбирались ни по каким параметрам.

На рис. 5 представлена схема трёх­канального зависимого переключателя. В ней объединены три выключателя, но при необходимости их число может быть увеличено. Кратковременное нажатие на любую из кнопок вызовет включение соответствующего выключателя и под­ключение соответствующей нагрузки к источнику питания. Если нажать на какую-либо другую кнопку, включится соответствующий выключатель, а пре­дыдущий выключится. Нажатие на сле­дующую кнопку включит следующий вы­ключатель, а предыдущий опять отклю­чится. При повторном же нажатии на ту же кнопку последний работающий вы­ключатель выключится, и устройство возвратится в исходное состояние — все нагрузки будут обесточены. Режим переключения обеспечивает резистор R5. При включении какого-либо выклю­чателя напряжение на этом резисторе возрастает, что приводит к закрыванию включённого ранее выключателя. Сопро­тивление этого резистора зависит от тока, потребляемого самими выключа­телями, в данном случае его значение — около 3 мА. Элементы VD1, R3 и С2 обеспечивают прохождение разрядного тока конденсаторов СЗ, С5 и С7. Через резистор R3 конденсатор С2 разряжает в паузах между нажатиями на кнопку. Если эту цепь исключить, останутся только режимы включения и переключе­ния. Заменив резистор R5 проволочной перемычкой, получим три независимо работающих устройства.

Переключатель предполагалось при­менить в коммутаторе телевизионных антенн с усилителями, но с появлением кабельного телевидения необходи­мость в нём отпала, и проект не был реализован на практике.

В выключателях могут быть примене­ны транзисторы самых разных типов, но они должны соответствовать опре­делённым требованиям. Во-первых, все они должны быть кремниевыми. Во-вторых, транзисторы, коммути­рующие ток нагрузки, должны иметь напряжение насыщения Uк-э нас не более 0,2…0,3 В, максимальный допустимый ток коллектора Iк макс должен быть в несколько раз боль­ше коммутируемого тока, а коэффи­циент передачи тока h21э достаточ­ный, чтобы при заданном токе базы транзистор находился в режиме насыщения. Из имеющихся у меня в наличии транзисторов хорошо заре­комендовали себя транзисторы серий КТ209 и КТ502, несколько хуже — серий КТ3107 и КТ361.

Сопротивления резисторов можно изменять в значительных пределах. Если требуется большая экономичность и не нужна индикация состояния выключате­ля, светодиод не устанавливают, а резис­тор в цепи коллектора ѴТЗ (см. рис. 4) можно увеличить до 100 кОм и более, но надо учесть, что при этом уменьшится базовый ток транзистора ѴТ2 и макси­мальный ток в нагрузке. Транзистор ѴТЗ (см. рис. 3) должен иметь коэффициент передачи тока h21э более 100. Сопротив­ление резистора R5 в зарядной цепи конденсатора С1 (см. рис. 1) и аналогич­ных ему в других схемах может быть в интервале 100.. 470 кОм. Конденсатор С1 (см. рис. 1) и аналогичные ему в дру­гих схемах должны быть с малым током утечки, желательно применить оксидно­полупроводниковые серии К53, но можно применять и оксидные, при этом сопротивление резистора R5 должно быть не более 100 кОм. При увеличении ёмкости этого конденсатора уменьшится быстродействие (время, по истечении которого устройство можно выключить после включения), а если уменьшить — снизится чёткость в работе. Конденсатор С2 (см. рис. 3) — только оксидно-полу­проводниковый. Кнопки — любые мало­габаритные с самовозвратом. Катушка L1 преобразователя (см. рис. 2) приме­нена от регулятора линейности строк чёрно-белого телевизора, хорошо рабо­тает преобразователь и с дросселем на Ш-образном магнитопроводе от КЛЛ. Можно также воспользоваться рекомен­дациями, приведёнными в [2]. Диод VD1 (см. рис. 5) может быть любым маломощ­ным, как кремниевым, так и германие­вым. Диод VD1 (см. рис. 3) должен быть обязательно германиевым.

Читайте также:  Модели рамок для выключателей

Налаживания требуют устройства, схемы которых показаны на рис. 2 и рис. 5, остальные в налаживании не нуж­даются, если нет особых требований и все детали исправны. Для налаживания разрядного устройства (см. рис. 2) по­требуется источник питания с регули­руемым напряжением на выходе. Преж­де всего, взамен резистора R4 временно устанавливают переменный резистор сопротивлением 4,7 кОм (в максимум сопротивления). Подключают источник питания, предварительно установив на его выходе напряжение 1,25 В. Вклю­чают разрядное устройство нажатием на кнопку и устанавливают с помощью резистора R8 требуемый ток разрядки. После этого устанавливают на выходе источника питания напряжение 1 В, и с помощью добавочного переменного резистора добиваются выключения устройства. После этого надо несколько раз проверить напряжение выключения. Для этого необходимо увеличить напря­жение на выходе источника питания до 1,25 В, включить устройство, затем не­обходимо плавно уменьшать напряже­ние до 1 В, наблюдая момент выклю­чения. Затем измеряют введённую часть дополнительного переменного резис­тора и заменяют его постоянным с таким же сопротивлением.

Во всех других устройствах также можно реализовать аналогичную функ­цию выключения при снижении входного напряжения. Налаживание производится аналогично. При этом надо иметь в виду то обстоятельство, что вблизи точки вы­ключения транзисторы начинают закры­ваться плавно и ток в нагрузке тоже будет плавно уменьшаться. Если в качестве нагрузки будет радиоприёмник, то это проявится как уменьшение громкости. Возможно, рекомендации, описанные в [1], помогут решить эту проблему.

Налаживание переключателя (см. рис. 5) сводится к временной заме­не постоянных резисторов R3 и R5 на переменные с сопротивлением в 2…3 ра­за больше. Последовательно нажимая на кнопки, с помощью резистора R5 добиваются надёжной работы. После этого повторными нажатиями на одну и ту же кнопку с помощью резистора R3 добиваются надёжного выключения. Затем переменные резисторы заме­няют постоянными, как сказано выше. Для повышения помехоустойчивости параллельно резисторам R7, R13 и R19 надо установить керамические конден­саторы ёмкостью несколько нанофарад.

  1. Поляков В. Электронный выключатель защищает аккумуляторную батарею. — Радио, 2002, № 8, с. 60.
  2. Нечаев И. Электронная спичка. — Радио, 1992, N° 1, с. 19—21.

Автор: В. БУЛАТОВ, пгт Новый Свет, Донецкая обл., Украина
Источник: Радио №5/2016

Источник



Выключатели нагрузки на постоянный ток

Коммутационные устройства, предназначенные для управления цепями постоянного тока. Выключатели нагрузки имеют ручное управление. В качестве элемента управления используется поворотная ручка (в комплекте поставки устройства может отсутствовать). Управление фронтальное или боковое. Устройства рассчитаны на постоянный ток силой до 160 А, напряжение до 1000 В. Количество силовых полюсов – 2 или 3.

Выключатели нагрузки на постоянный ток могут применяться в качестве силового или сервисного выключателя. Надежность и безотказность устройства определяется механической износостойкостью, которая, как правило, составляет 4000-5000 циклов. Степень защиты электрической безопасности соответствует IP20. Монтаж осуществляется на монтажную плату или DIN-рейку. Выключатели нагрузки рассчитаны на кабель площадью сечения 2,5-16 кв. мм.

В выключателях нагрузки на постоянный ток силой более 100 А в конструкции предусматривается дугогасительная камера. Дугогасительные контакты отключаются последними – они предназначены для защиты основных контактов устройства от обгорания.

Тел.: +7(800) 301-65-25, (495) 505-65-25

Москва, ул.Бутлерова, д.17. Тел.: +7 (495) 505-65-25

Подольск, ул.Ленина 1. Тел.: +7 (495) 505-65-25, (4967) 58-65-25

Краснодар, ул.Одесская 48. Тел.: +7 (861) 200-95-15

Новосибирск, просп. Карла Маркса, 30/1. Тел.: +7 (383) 209-64-25

Санкт-Петербург, улица Ефимова, 4а. Тел.: +7 (800) 301-65-25

Внутренний веб-портал

Источник