Меню

Формула вектора магнитной индукции катушки с током

Вектор магнитной индукции

date image2015-06-04
views image49831

facebook icon vkontakte icon twitter icon odnoklasniki icon

Вектор магнитной индукции (В) — это основная силовая характеристика магнитного поля (обозначается В). Пробный контур, помещенный в магнитное поле, испытывает со стороны магнитного поля действие вращающего момента сил М.

Бесконечно длинный ток величины I создает на расстоянии r от себя магнитное поле:

где Мо — магнитная постоянная, R — расстояние, I — сила тока в проводнике.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой в данной точке магнитного поля.

Единица магнитной индукции — тесла (Тл).

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

В вакууме B = μH.

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Опытным путем было установлено, что для одной и той же точки магнитного поля максимальный вращающий момент М (момент сил) пропорционален произведению силы тока I в контуре на его площадь S. Величину IS называют магнитным моментом контура Pm.

Рисунок– Электрический ток (I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника. Рисунок – Правило буравчика

Правило буравчика (винта): Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током.

На практике удобно пользоваться следующим правилом: Если обхватить соленоид (катушку) правой рукой так, что бы четыре пальца были направлены по току, то отогнутый большой палец покажет направление магнитного поля внутри соленоида.

Рисунок 3.2 – А) Образование магнитного потока в соленоиде

Б) Схема полей в соленоиде при протекании по обмотке переменного тока

Единица измерения В в СИ — тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

Источник

Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.

Магнитное действие электрического тока

1820 г. X. Эрстед — датский физик, открыл магнитное дей­ствие тока. (Опыт: действие электрического тока на магнитную стрелку). 1820 г. А. Ампер — французский ученый, открыл механическое взаимо­действие токов и установил закон это­го взаимодействия.

Магнитное действие электрического тока

Магнитное взаимодействие, как и электрическое, удобно рассматриватьвводя понятие магнитного поля:

Магнитное поле порождается током, т. е. движущимися электрическими зарядами. противоположно направленные токи отталкиваются, однонаправленные токи притягиваются

Для двух параллельных бесконечно длинных проводников было установлено:

противоположно направленные токи отталкиваются,

однонаправленные токи притягиваются,

причем противоположно направленные токи отталкиваются, однонаправленные токи притягиваются, где k — коэффициент пропорциональности.

Для двух параллельных бесконечно длинных проводников

Отсюда устанавливается единица силы тока ампер в СИ: сила тока равна 1 А , если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2 . 10 7 Н .

сила тока равна 1 А, если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2.10 7Н

В СИ удобно ввести магнитную проницаемость вакуума В СИ удобно ввести магнитную проницаемость вакуума.

В СИ удобно ввести магнитную проницаемость вакуума

Вектор магнитной индукции.

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Вектор магнитной индукции

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

Модуль вектора магнитной индукции

Магнитная индукция В зависит от I и r , где r — расстояние от проводника с током до исследуемой точки. Если расстояние от проводника много меньше его длины (т. е. рассматривать модель бесконечно длинного проводника), тоМодуль вектора магнитной индукции,

где k — коэффициент пропорциональности. Подставляя эту формулу в уравнение для силы взаимодействия двух проводников с током, получим F=B . I . ℓ.

Отсюда Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка..

Таким образом, модуль вектора магнитной индукции Вектор магнитной индукцииесть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Единица измерения в СИ — тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

диница измерения в СИ - тесла (Тл)

Магнитный поток

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Магнитный поток (поток линий магнитной индукции)

Магнитный поток (поток линий магнитной индукции), где Вcosα представляет собой проекцию вектора В на нормаль к плоскости контура. Магнитный поток показывает, какое количество линий магнитной индукции пронизывает данный контур.

Магнитный поток (поток линий магнитной индукции)

Единица магнитного потока в СИ — вебер (Вб) . В честь немецкого физика В. Вебера.

Единица магнитного потока в СИ - вебер (Вб)

Опыт показывает, что линии магнитной индукции всегда замкнуты, и полный магнитный поток через замкнутую поверхность равен нулю. Этот факт является следствием отсутствия магнитных зарядов в природе.

Источник

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Читайте также:  Падение мощности тока формула

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Читайте также:  Расчет токов через человека

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник



Вектор магнитной индукции: формула

Один из параметров магнитного поля – его силовая характеристика. Она обозначает, с какой силой поле влияет на движущиеся в нём заряженные частицы. Это значение из разряда векторных величин, носит название магнитная индукция B→.

Индукция B→ проводника с током и соленоида

Физический смысл магнитной индукции (МИ)

Возможность действовать на предмет магнитным полем (МП) определяет сущность настоящей индукции. Она появляется в момент перемещения в катушке индуктивности магнита постоянной природы. Результатом такого движения является появление тока, с одновременным увеличением магнитного потока. Поскольку обмотка у катушки металлическая, а структура металла – кристаллическая решётка, то можно объяснить физические свойства этого явления.

Электроны, находящиеся в этой решётке, при отсутствии магнитного воздействия находятся в покое. Движения никакого нет. Оно начинается в тот момент, когда электроны попадают под воздействие переменного МП (поле изменяется при перемещении постоянного магнита).

Значение возникающего в катушке тока зависит от диаметра жилы и количества витков, физических характеристик магнита и скорости его движения.

Единица размерности в системе Си рассматриваемой характеристики – тесла. Она обозначается буквами Тл.

Важно! Электроны в решётке, после попадания катушки в МП, разворачиваются под некоторым углом и выстраиваются вдоль силовых линий МП. Количество ориентированных частиц и однородность их размещения зависимы от величины поля.

Вектор – это вектор индукции магнитного поля (градиентный параметр МП).

Вектор магнитной индукции

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали.

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Определение направления B→

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Графическое обозначение линий МИ

Модуль вектора магнитной индукции

Чтобы определить величину вектора МИ, нужно узнать его модуль. Как определяется модуль вектора магнитной индукции (градиент)? Это можно понять на примере небольшой модели. Если поместить в поле подковообразного магнита горизонтально подвешенный проводник, то МП магнита будет действовать только на участок, расположенный в междуполюсном промежутке. Сила F→, действующая на этот участок, будет направлена под прямым углом к линиям индукции и самому проводнику. Она достигает своего максимума, когда орт МИ располагается перпендикулярно проводнику.

Значение модуля B→ будет равно отношению максимального значения этой силы F к произведению длины отрезка ∆L на силу движения зарядов (I), а именно:

Электрическая модель для определения модуля B→

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB:

dB = µ0 *I*dl*sin α /4*π*r2,

где:

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме.

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

Для кругового движения она выглядит так:

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Читайте также:  Задачи найдем ток в цепи

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

где:

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900).

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Видео

Источник

Магнитное поле катушки с током

Если в пространстве вокруг неподвижных электрических зарядов существует электростатическое поле, то в пространстве вокруг движущихся зарядов (как и вокруг изменяющихся во времени электрических полей, что изначально предположил Максвелл) существует магнитное поле. Это легко наблюдать экспериментально.

Именно благодаря магнитному полю и взаимодействуют между собой электрические токи, а также постоянные магниты и токи с магнитами. По сравнению с электрическим взаимодействием, магнитное взаимодействие является значительно более сильным. Это взаимодействие в свое время изучал Андре-Мари Ампер.

В физике характеристикой магнитного поля служит магнитная индукция B, и чем она больше, тем сильнее магнитное поле. Магнитная индукция В — величина векторная, ее направление совпадает с направлением силы, действующей на северный полюс условной магнитной стрелки, помещенной в какую-нибудь точку магнитного поля, — магнитное поле сориентирует магнитную стрелку в направлении вектора В, то есть в направлении магнитного поля.

Вектор В в каждой точке линии магнитной индукции направлен к ней по касательной. То есть индукция В характеризует силовое действие магнитного поля на ток. Похожую роль играет напряженность Е для электрического поля, характеризующая силовое действие электрического поля на заряд.

Простейший эксперимент с железными опилками позволяет наглядно продемонстрировать явление действия магнитного поля на намагниченный объект, поскольку в постоянном магнитном поле маленькие кусочки ферромагнетика (такими кусочками являются железные опилки) становится, намагничиваясь по полю, магнитными стрелками, словно маленькими стрелками компаса.

Эксперимент с металлическими опилками

Если взять вертикальный медный проводник, и продеть его через отверстие в горизонтально расположенном листе бумаги (или оргстекла, или фанеры), а затем насыпать металлические опилки на лист, и немного встряхнуть его, после чего пропустить по проводнику постоянный ток, то легко заметить, как опилки выстроятся в форме вихря по окружностям вокруг проводника, в плоскости перпендикулярной току в нем.

Эти окружности из опилок как раз и будут условным изображением линий магнитной индукции В магнитного поля проводника с током. Центр окружностей, в данном эксперименте, будет расположен ровно в центре, по оси проводника с током.

Правило правового винта

Направление векторов магнитной индукции В проводника с током легко определить по правилу буравчика или по правилу правого винта: при поступательном движении оси винта по направлению тока в проводнике, направление вращения винта или рукоятки буравчика (вкручиваем или выкручиваем винт) укажет направление магнитного поля вокруг тока.

Почему применяется правило буравчика? Поскольку операция ротор (обозначаемая в теории поля rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения идеальной жидкости (как представлял сам Максвелл), поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые описаны для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Как видите, в отличие от линий напряженности электростатического поля, которые в пространстве разомкнуты, линии магнитной индукции, окружающие электрический ток, замкнуты. Если линии электрической напряженности Е начинаются на положительных зарядах и заканчиваются на отрицательных, то линии магнитной индукции В просто замкнуты вокруг порождающего их тока.

Проводник с током и металлические опилки

Теперь усложним эксперимент. Рассмотрим вместо прямого проводника с током виток с током. Допустим, нам удобно расположить такой контур перпендикулярно плоскости рисунка, причем слева ток направлен на нас, а справа — от нас. Если теперь внутри витка с током разместить компас с магнитной стрелкой, то магнитная стрелка укажет направление линий магнитной индукции — они окажутся направлены по оси витка.

Почему? Потому что противоположные стороны от плоскости витка окажутся аналогичны полюсам магнитной стрелки. Откуда линии В выходят — это северный магнитный полюс, куда входят — южный полюс. Это легко понять, если сначала рассмотреть проводник с током и с его магнитным полем, а затем просто свернуть проводник в кольцо.

Направление тока в витке

Для определения направления магнитной индукции витка с током также пользуются правилом буравчика или правилом правого винта. Поместим острие буравчика по центру витка, и станем его вращать по часовой стрелке. Поступательное движение буравчика совпадет по направлению с вектором магнитной индукции В в центре витка.

Очевидно, направление магнитного поля тока связано с направлением тока в проводнике, будь то прямой проводник или виток.

Принято считать, что та сторона катушки или витка с током, откуда линии магнитной индукции В выходят (направление вектора В наружу) — это и есть северный магнитный полюс, а куда линии входят (вектор В направлен внутрь) — это южный магнитный полюс.

Магнитное поле катушки с током

Если множество витков с током образуют длинную катушку — соленоид (длина катушки во много раз превышает ее диаметр), то магнитное поле внутри нее однородно, то есть линии магнитной индукции В параллельны друг другу, и имеют одинаковую плотность по всей длине катушки. Кстати, магнитное поле постоянного магнита похоже снаружи на магнитное поле катушки с током.

Для катушки с током I, длиной l, с количеством витков N, магнитная индукция в вакууме будет численно равна:

Магнитная индукция

Итак, магнитное поле внутри катушки с током является однородным, и направлено от южного к северному полюсу (внутри катушки!) Магнитная индукция внутри катушки пропорциональна по модулю числу ампер-витков на единицу длины катушки с током.

Источник