Меню

Генератор для передачи энергии по одному проводу

Однопроводные ЛЭП: дорога в никуда или будущее энергетики?

Передача электроэнергии в удаленные населенные пункты с небольшим числом жителей требует экономичных решений. Одним из вариантов является применение однопроводных линий. Обратной стороной снижения затрат при строительстве являются значительные ограничения по передаваемой мощности и вариантам размещения системы. Поэтому около 30 лет тому назад однопроводные линии сочли бесперспективным направлением, но сейчас к ним снова возрождается интерес. Считается, что современные технологии позволяют вывести однопроводные ЛЭП на новый технический уровень, когда они смогут конкурировать с двух- и трехпроводными аналогами не только по стоимости строительства, но и по эффективности. Разберемся, так ли это на самом деле и какие есть реальные перспективы для подобных решений.

В последнее время вокруг фигуры Николы Тесла возник ореол таинственности. Говорят, что этот ученый сделал некое изобретении, которое позволяло обеспечить человечество бесплатной электроэнергией. Тесла якобы научился черпать энергию из ничего, что не понравилось нефтяным магнатам. Правда, никаких публикаций о подобных системах не осталось, что, кстати, дополнительно подогревает интерес любителей «теории заговоров» — значит, «мировая закулиса» уничтожила все документальные свидетельства великого изобретения.

Но вполне возможно, что полумифическое изобретение, вокруг которого подняли шумиху, существует в реальности и даже практически реализовано, просто принцип его действия несколько иной, чем они его описывают. Действительно, Тесла нашел способ, как значительно удешевить строительство ЛЭП и на порядок снизить потери в них. В итоге человечество могло получить, хотя и не бесплатную, но очень дешевую электроэнергию. Изобретение было запатентовано в 1900 году, но практическая реализация оказалось отложена более чем на век. И причина заключается не в злокознях нефтяных баронов, а просто потому, что долгое время уровень развития технологий не позволял его реализовать.

Система, предложенная Николой Тесла, работает следующим образом (рис. 1). На передающей и приемной сторонах стоят трансформаторы Тесла. Они соединены между собой однопроводной линией электропередачи, которая, как и любой отрезок провода, имеет некую собственную резонансную частоту. Оба трансформатора настроены на эту частоту.

Благодаря резонансу электроэнергия передается не током в сердцевине провода, а электромагнитными волнами, распространяющимися вдоль его поверхности. Таким образом, резко снижаются потери электроэнергии. Кроме этого, можно сэкономить на проводе — он может быть значительно тоньше, чем в традиционных ЛЭП и выполнен из дешевого сплава со сравнительно невысокой проводимостью. И, конечно, значительная экономия получается благодаря тому, что проводов не два, а один.

Основная проблема в реализации такого принципа заключается в том, что собственная частота резонанса линии постоянно меняется. Изменилась температура окружающей среды — изменилась длина провода, нужно менять частоту, на которой передается электроэнергия. И есть множество других факторов, которые требуют постоянно подстраивать рабочую частоту системы. В начале XX века это было невозможно сделать, поэтому дальше лабораторных опытов дело не пошло.

Но от идеи использовать один провод вместо двух инженеры не отказались, реализовав ее на доступном тогда технологическом уровне.

Система SWER

В простейшем варианте однопроводные линии электропередач работают на тех же принципах, что и двухпроводные, но в качестве одного из проводов используется земля. Называется такая система SWER (Single Wire Earth Return — однопроводная с землей в качестве обратного провода).

Схема передачи электроэнергии по системе SWER показана на рис. 2. Используется заземление с сопротивлением 5-10 Ом. Поскольку сопротивление нашей планеты составляет менее 1 Ом, характеристики системы будут определяться главным образом сопротивлением заземления. Сила тока в заземлении не должна превышать 8 А, что ограничивает передаваемую мощность. Напряжение между проводом или землей составляет 12,7 или 19,1 кВ. Провод, по которому осуществляется передача энергии — стальной оцинкованный диаметром 3,26 мм, в последнее время вместо оцинкованных используют стальные провода, покрытые тонким слоем алюминия.

Основной проблемой для системы SWER является обеспечение безопасности. Система рассчитывается таким образом, чтобы шаговое напряжение в почве не превышало 20 В/м. То есть шаговое напряжение не опасно для человека. Хотя некоторые экологи считают, что протекание электрического тока через землю негативно сказывается на природе. К тому же, SWER нельзя использовать в крупных агломерациях, так как там она будет вызывать электрическую коррозию объектов городской инфраструктуры вблизи питающих подстанций. Поэтому SWER используется только для электрификации удаленных населенных пунктов.

Впервые система SWER была использована еще в 1925 году при строительстве ЛЭП в Новой Зеландии. С тех пор SWER получила большое распространение в этой стране, а также в соседней Австралии. Причина того, что именно в этих странах SWER завоевала популярность, связана с низкой плотностью населения там. В Австралии есть дополнительное преимущество для данной системы — значительная часть территории страны покрыта пустынями, где система SWER не создает практически никаких проблем. По данным на 2008 г., в Австралии эксплуатировалось более 150 тыс. км. линий SWER.

Помимо Австралии и Новой Зеландии, система SWER использовалась в Бразилии, Канаде, а также в ряде африканских стран. Существует опытная ЛЭП и в США на Аляске. Также системы, аналогичные SWER, используются на некоторых подводных ЛЭП, обратным проводом в них является морская вода. Как правило, подводные однопроводные системы работают на постоянном токе.

Следует отметить, что в большинстве стран мира национальные нормы требуют использования металлического обратного провода, но в ряде случаев эксплуатация систем SWER, тем не менее, допускается на основе разрешения, выданного в индивидуальном порядке. В СССР и в современной России SWER и аналогичные ей системы никогда не использовались, даже не рассматривалась официально возможность строительства таких ЛЭП. Для нашей страны с большими лесными массивами и множеством факторов, способствующим обрыву проводов ЛЭП, имеющиеся в системе SWER проблемы с безопасностью оказываются совершенно неприемлемыми.

За рубежом интерес к развитию системы SWER к середине 80-х годов постепенно угас, но в конце 2000-х годов возродился вновь. В условиях глобального экономического кризиса инвесторы обратили свои взоры на Африку, так как экономики многих стран этого континента демонстрируют впечатляющий рост. Но именно там существуют проблемы с энергоснабжением. Система SWER способна решить их с небольшими затратами, при этом условия на континенте (малая плотность населения, значительную часть площади занимают пустыни) оптимальны для данной системы.

Резонансные системы передачи

В СССР вместо SWER разрабатывали систему однопроводной системы передачи электроэнергии, основанной на принципе, открытом Николой Тесла. Работы по изучению работы ЛЭП в резонансном режиме были начаты в 1956 году в Сибирском НИИ энергетики (Сиб-НИИЭ) под руководством профессора В.К.Щербакова. В 80-е годы разработки по однопроводным линиям велись во Всесоюзном энергетическом институте (ВИЭ), позже это проблематикой занялись во Всероссийском НИИ электрификации сельского хозяйства (ВИЭСХ).

По сравнению со SWER, однопроводная резонансная линия более безопасна. При обрыве или же замыкании на землю провода меняется частота собственного резонанса линии. Это может быть обнаружено автоматикой на передающей стороне и подача электроэнергии будет сразу же отключена. Не говоря уж о том, что из-за изменения частоты резонанса напряжение в линии само по себе резко уменьшается. По этой же причине однопроводные резонансные линии надежно защищены от несанкционированного отбора электроэнергии. Данные о воздействии электрической коррозии от резонансных однопроводных систем на городскую инфраструктуру пока отсутствуют из-за малочисленности опытов.

Читайте также:  Пропадает искра с центрального провода

Современная реализация идей Теслы предусматривает подстройку рабочей частоты системы и резонансной частоты трансформаторов с помощью компьютеров. Это приводит к значительному увеличению стоимости оборудования, что является недостатком системы. Поэтому применять однопроводные резонансные системы стоит главным образом как часть интеллектуальных систем электропитания с распределенным управлением, что позволяет использовать одно и то же компьютерное оборудование как для управления сетью, так и для подстройки частоты.

В резонансных однопроводных линиях передача энергии осуществляется на частотах от 1,5 кГц до 20 кГц. Это значительно выше, чем частота переменного тока в обычных линиях (50 Гц), к тому же, частота может меняться в широких пределах. При передаче больших мощностей по воздушным ЛЭП возникает проблема электромагнитной совместимости с электронными устройствами, находящимися поблизости, не решенная до сих пор.

Тем не менее, однопроводные резонансные системы уже сейчас могут найти применение для питания устройств с небольшой потребляемой мощностью (порядка единиц ватт). Речь идет о камерах видеонаблюдения и публичных точках доступа Wi-Fi, установленных в парках, а также других открытых пространствах. Эти устройства соединяются друг с другом самонесущим волоконно-оптическим кабелем, имеющим внутри прочный стальной трос. По этому тросу можно организовать однопроводную передачу электроэнергии.

В 2013 году в подмосковном городе Дубна была введена в эксплуатацию непрерывная зона доступа Wi-Fi вдоль набережной Волги длиной 1250 м. Точки доступа Wi-Fi питаются в ней через стальной трос оптического кабеля описанным выше способом. Оборудование создано ООО «Мезон» — резидентом технопарка при местном университете. По оценкам разработчиков, их система позволяет на 40% сократить капитальные затраты на строительство линии электропередачи.

Дальнейшее развитие однопроводных резонансных систем будет, очевидно, связано с внедрением технологии для создания подземных кабельных линий. При этом автоматически решается проблема электромагнитной совместимости, да и частота собственного резонанса линии, находящейся под землей, более стабильна, что упрощает систему регулировки частоты.

В ВИЭСХ уже создана опытная подземная однопроводная линия длиной 1,2 км, способная передавать электроэнергию мощностью до 20 кВт. Есть и разработки, позволяющие передавать до 100 кВт. Основная проблема, которую предстоит решить для широкого распространения подземных однопроводных линий — создание недорогой изоляции с минимальными потерями электромагнитных волн, распространяющихся вдоль провода. Возможным выходом станут так называемые газоизолированные ЛЭП, в которых изоляцией является специальный газ, закачанный под давлением в оболочку провода. Тем не менее, о полной замене традиционных систем передачи электроэнергии на однопроводные резонансные в обозримом будущем говорить не приходится. Но для специализированных применений, как, например, упоминавшаяся система электропитания точек доступа Wi-Fi, однопроводные системы уже сейчас могут использоваться, давая значительную экономию.

Источник



Передача электроэнергии по одному проводу — выдумка или реальность?

Передача электроэнергии по одному проводу - выдумка или реальность?В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что у нас в стране работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко.

Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами!

Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л.

Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 — 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

Читайте также:  Как перемещается ток по проводам

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года.

В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники.

Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м.

Источник

Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз!

Наука и новые технологии Олег СЕРДЮКОВ 9152

Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только‑только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!

Тогда он взял пластмассовую расческу, натер ее и стал махать возле лампы. И лампа снова зажглась. А ведь в институте учили другому: нужно либо подвести к лампе два конца, анод и катод, либо поместить газоразрядную лампу в переменное электромагнитное поле достаточно высокой частоты.

Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах. Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике. Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт.

Трансформатор Авраменко

Дело пошло. Сначала появились малые токи, 2‑3 Вт, потом – большей мощности. В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.

На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все‑таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.

В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» – включенных особым образом диодах. С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля – Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача – лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.

В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.

За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети.

Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10‑15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2‑4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6‑7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача – указывать направление тока. Что это значит? А это значит – происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил. Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.

Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил деньги, и опыты стали производиться на гораздо более серьезной основе. Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.

Читайте также:  Провода для обогрева бетона пнсв

Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.

Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например – по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток – по металлической оплетке кабеля) и т.п. (патент РФ № 2172546). А раз так – то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы. Еще одна область применения (патент № 2136515) – оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также – оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206). Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы – и по электронному лучу (патент № 2163376).

Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».

Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» – организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб. Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80‑100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр.

Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане
Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу.

Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из‑за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись.

Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.

Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты!

Но это пока только будущее.

Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов. Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии. Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома. Тем более что его стоимость сегодня составит примерно $1000 (против 45‑60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.

Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники. Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт.

Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

«> Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз! Код PHP » data-description=»Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только‑только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!

Источник

Генератор для передачи энергии по одному проводу

Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз!

Наука и новые технологии Олег СЕРДЮКОВ 9152

Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только‑только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!

Тогда он взял пластмассовую расческу, натер ее и стал махать возле лампы. И лампа снова зажглась. А ведь в институте учили другому: нужно либо подвести к лампе два конца, анод и катод, либо поместить газоразрядную лампу в переменное электромагнитное поле достаточно высокой частоты.

Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах. Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике. Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт.

Трансформатор Авраменко

Дело пошло. Сначала появились малые токи, 2‑3 Вт, потом – большей мощности. В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.

На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все‑таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.

В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» – включенных особым образом диодах. С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля – Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача – лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.

В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.

За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети.

Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10‑15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2‑4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6‑7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача – указывать направление тока. Что это значит? А это значит – происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил. Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.

Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил деньги, и опыты стали производиться на гораздо более серьезной основе. Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.

Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.

Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например – по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток – по металлической оплетке кабеля) и т.п. (патент РФ № 2172546). А раз так – то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы. Еще одна область применения (патент № 2136515) – оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также – оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206). Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы – и по электронному лучу (патент № 2163376).

Читайте также:  Провод с серой полосой это

Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».

Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» – организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб. Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80‑100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр.

Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане
Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу.

Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из‑за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись.

Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.

Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты!

Но это пока только будущее.

Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов. Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии. Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома. Тем более что его стоимость сегодня составит примерно $1000 (против 45‑60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.

Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники. Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт.

Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

«> Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз! Код PHP » data-description=»Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только‑только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!

Источник

Однопроводные ЛЭП: дорога в никуда или будущее энергетики?

Передача электроэнергии в удаленные населенные пункты с небольшим числом жителей требует экономичных решений. Одним из вариантов является применение однопроводных линий. Обратной стороной снижения затрат при строительстве являются значительные ограничения по передаваемой мощности и вариантам размещения системы. Поэтому около 30 лет тому назад однопроводные линии сочли бесперспективным направлением, но сейчас к ним снова возрождается интерес. Считается, что современные технологии позволяют вывести однопроводные ЛЭП на новый технический уровень, когда они смогут конкурировать с двух- и трехпроводными аналогами не только по стоимости строительства, но и по эффективности. Разберемся, так ли это на самом деле и какие есть реальные перспективы для подобных решений.

В последнее время вокруг фигуры Николы Тесла возник ореол таинственности. Говорят, что этот ученый сделал некое изобретении, которое позволяло обеспечить человечество бесплатной электроэнергией. Тесла якобы научился черпать энергию из ничего, что не понравилось нефтяным магнатам. Правда, никаких публикаций о подобных системах не осталось, что, кстати, дополнительно подогревает интерес любителей «теории заговоров» — значит, «мировая закулиса» уничтожила все документальные свидетельства великого изобретения.

Но вполне возможно, что полумифическое изобретение, вокруг которого подняли шумиху, существует в реальности и даже практически реализовано, просто принцип его действия несколько иной, чем они его описывают. Действительно, Тесла нашел способ, как значительно удешевить строительство ЛЭП и на порядок снизить потери в них. В итоге человечество могло получить, хотя и не бесплатную, но очень дешевую электроэнергию. Изобретение было запатентовано в 1900 году, но практическая реализация оказалось отложена более чем на век. И причина заключается не в злокознях нефтяных баронов, а просто потому, что долгое время уровень развития технологий не позволял его реализовать.

Читайте также:  Провода для обогрева бетона пнсв

Система, предложенная Николой Тесла, работает следующим образом (рис. 1). На передающей и приемной сторонах стоят трансформаторы Тесла. Они соединены между собой однопроводной линией электропередачи, которая, как и любой отрезок провода, имеет некую собственную резонансную частоту. Оба трансформатора настроены на эту частоту.

Благодаря резонансу электроэнергия передается не током в сердцевине провода, а электромагнитными волнами, распространяющимися вдоль его поверхности. Таким образом, резко снижаются потери электроэнергии. Кроме этого, можно сэкономить на проводе — он может быть значительно тоньше, чем в традиционных ЛЭП и выполнен из дешевого сплава со сравнительно невысокой проводимостью. И, конечно, значительная экономия получается благодаря тому, что проводов не два, а один.

Основная проблема в реализации такого принципа заключается в том, что собственная частота резонанса линии постоянно меняется. Изменилась температура окружающей среды — изменилась длина провода, нужно менять частоту, на которой передается электроэнергия. И есть множество других факторов, которые требуют постоянно подстраивать рабочую частоту системы. В начале XX века это было невозможно сделать, поэтому дальше лабораторных опытов дело не пошло.

Но от идеи использовать один провод вместо двух инженеры не отказались, реализовав ее на доступном тогда технологическом уровне.

Система SWER

В простейшем варианте однопроводные линии электропередач работают на тех же принципах, что и двухпроводные, но в качестве одного из проводов используется земля. Называется такая система SWER (Single Wire Earth Return — однопроводная с землей в качестве обратного провода).

Схема передачи электроэнергии по системе SWER показана на рис. 2. Используется заземление с сопротивлением 5-10 Ом. Поскольку сопротивление нашей планеты составляет менее 1 Ом, характеристики системы будут определяться главным образом сопротивлением заземления. Сила тока в заземлении не должна превышать 8 А, что ограничивает передаваемую мощность. Напряжение между проводом или землей составляет 12,7 или 19,1 кВ. Провод, по которому осуществляется передача энергии — стальной оцинкованный диаметром 3,26 мм, в последнее время вместо оцинкованных используют стальные провода, покрытые тонким слоем алюминия.

Основной проблемой для системы SWER является обеспечение безопасности. Система рассчитывается таким образом, чтобы шаговое напряжение в почве не превышало 20 В/м. То есть шаговое напряжение не опасно для человека. Хотя некоторые экологи считают, что протекание электрического тока через землю негативно сказывается на природе. К тому же, SWER нельзя использовать в крупных агломерациях, так как там она будет вызывать электрическую коррозию объектов городской инфраструктуры вблизи питающих подстанций. Поэтому SWER используется только для электрификации удаленных населенных пунктов.

Впервые система SWER была использована еще в 1925 году при строительстве ЛЭП в Новой Зеландии. С тех пор SWER получила большое распространение в этой стране, а также в соседней Австралии. Причина того, что именно в этих странах SWER завоевала популярность, связана с низкой плотностью населения там. В Австралии есть дополнительное преимущество для данной системы — значительная часть территории страны покрыта пустынями, где система SWER не создает практически никаких проблем. По данным на 2008 г., в Австралии эксплуатировалось более 150 тыс. км. линий SWER.

Помимо Австралии и Новой Зеландии, система SWER использовалась в Бразилии, Канаде, а также в ряде африканских стран. Существует опытная ЛЭП и в США на Аляске. Также системы, аналогичные SWER, используются на некоторых подводных ЛЭП, обратным проводом в них является морская вода. Как правило, подводные однопроводные системы работают на постоянном токе.

Следует отметить, что в большинстве стран мира национальные нормы требуют использования металлического обратного провода, но в ряде случаев эксплуатация систем SWER, тем не менее, допускается на основе разрешения, выданного в индивидуальном порядке. В СССР и в современной России SWER и аналогичные ей системы никогда не использовались, даже не рассматривалась официально возможность строительства таких ЛЭП. Для нашей страны с большими лесными массивами и множеством факторов, способствующим обрыву проводов ЛЭП, имеющиеся в системе SWER проблемы с безопасностью оказываются совершенно неприемлемыми.

За рубежом интерес к развитию системы SWER к середине 80-х годов постепенно угас, но в конце 2000-х годов возродился вновь. В условиях глобального экономического кризиса инвесторы обратили свои взоры на Африку, так как экономики многих стран этого континента демонстрируют впечатляющий рост. Но именно там существуют проблемы с энергоснабжением. Система SWER способна решить их с небольшими затратами, при этом условия на континенте (малая плотность населения, значительную часть площади занимают пустыни) оптимальны для данной системы.

Резонансные системы передачи

В СССР вместо SWER разрабатывали систему однопроводной системы передачи электроэнергии, основанной на принципе, открытом Николой Тесла. Работы по изучению работы ЛЭП в резонансном режиме были начаты в 1956 году в Сибирском НИИ энергетики (Сиб-НИИЭ) под руководством профессора В.К.Щербакова. В 80-е годы разработки по однопроводным линиям велись во Всесоюзном энергетическом институте (ВИЭ), позже это проблематикой занялись во Всероссийском НИИ электрификации сельского хозяйства (ВИЭСХ).

По сравнению со SWER, однопроводная резонансная линия более безопасна. При обрыве или же замыкании на землю провода меняется частота собственного резонанса линии. Это может быть обнаружено автоматикой на передающей стороне и подача электроэнергии будет сразу же отключена. Не говоря уж о том, что из-за изменения частоты резонанса напряжение в линии само по себе резко уменьшается. По этой же причине однопроводные резонансные линии надежно защищены от несанкционированного отбора электроэнергии. Данные о воздействии электрической коррозии от резонансных однопроводных систем на городскую инфраструктуру пока отсутствуют из-за малочисленности опытов.

Современная реализация идей Теслы предусматривает подстройку рабочей частоты системы и резонансной частоты трансформаторов с помощью компьютеров. Это приводит к значительному увеличению стоимости оборудования, что является недостатком системы. Поэтому применять однопроводные резонансные системы стоит главным образом как часть интеллектуальных систем электропитания с распределенным управлением, что позволяет использовать одно и то же компьютерное оборудование как для управления сетью, так и для подстройки частоты.

В резонансных однопроводных линиях передача энергии осуществляется на частотах от 1,5 кГц до 20 кГц. Это значительно выше, чем частота переменного тока в обычных линиях (50 Гц), к тому же, частота может меняться в широких пределах. При передаче больших мощностей по воздушным ЛЭП возникает проблема электромагнитной совместимости с электронными устройствами, находящимися поблизости, не решенная до сих пор.

Тем не менее, однопроводные резонансные системы уже сейчас могут найти применение для питания устройств с небольшой потребляемой мощностью (порядка единиц ватт). Речь идет о камерах видеонаблюдения и публичных точках доступа Wi-Fi, установленных в парках, а также других открытых пространствах. Эти устройства соединяются друг с другом самонесущим волоконно-оптическим кабелем, имеющим внутри прочный стальной трос. По этому тросу можно организовать однопроводную передачу электроэнергии.

Читайте также:  Чем изолировать маленькие провода

В 2013 году в подмосковном городе Дубна была введена в эксплуатацию непрерывная зона доступа Wi-Fi вдоль набережной Волги длиной 1250 м. Точки доступа Wi-Fi питаются в ней через стальной трос оптического кабеля описанным выше способом. Оборудование создано ООО «Мезон» — резидентом технопарка при местном университете. По оценкам разработчиков, их система позволяет на 40% сократить капитальные затраты на строительство линии электропередачи.

Дальнейшее развитие однопроводных резонансных систем будет, очевидно, связано с внедрением технологии для создания подземных кабельных линий. При этом автоматически решается проблема электромагнитной совместимости, да и частота собственного резонанса линии, находящейся под землей, более стабильна, что упрощает систему регулировки частоты.

В ВИЭСХ уже создана опытная подземная однопроводная линия длиной 1,2 км, способная передавать электроэнергию мощностью до 20 кВт. Есть и разработки, позволяющие передавать до 100 кВт. Основная проблема, которую предстоит решить для широкого распространения подземных однопроводных линий — создание недорогой изоляции с минимальными потерями электромагнитных волн, распространяющихся вдоль провода. Возможным выходом станут так называемые газоизолированные ЛЭП, в которых изоляцией является специальный газ, закачанный под давлением в оболочку провода. Тем не менее, о полной замене традиционных систем передачи электроэнергии на однопроводные резонансные в обозримом будущем говорить не приходится. Но для специализированных применений, как, например, упоминавшаяся система электропитания точек доступа Wi-Fi, однопроводные системы уже сейчас могут использоваться, давая значительную экономию.

Источник



Передача электроэнергии по одному проводу — выдумка или реальность?

Передача электроэнергии по одному проводу - выдумка или реальность?В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что у нас в стране работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко.

Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами!

Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л.

Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 — 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года.

В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники.

Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м.

Источник