Меню

Изображение переменного тока графических диаграмм

Электротехника

вторник, 22 июня 2010 г.

ПЕРЕМЕННЫЙ ТОК И ЕГО ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ

РАЗДЕЛ 3. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА.

ТЕМА 3.1 ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ПЕРЕМЕННОГО ТОКА

ЛЕКЦИЯ 15. ПЕРЕМЕННЫЙ ТОК И ЕГО ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ

В технике под пе ременным током обычно понимают такой периодический ток, все значения которого повторяются через одинаковые промежутки времени, называемые периодом (Т). При этом в течение первой половины периода ток имеет одно направление, а в течение второй – другое, противоположное, направление.

Значение переменного тока, напряжения, мощности или ЭДС в какой-то произвольный момент времени называют мгновенным и обозначают: i , u , p , e .

Мгновенным значением тока называют отношение элементарного количества электричества dQ , проходящего через сечение проводника в течение времени dt , к длительности этого времени: i = dQ / dt .

Максимальные из мгновенных значений тока, напряжения, мощности и ЭДС называют амплитудными и обозначают: Im , Um , Pm , e m .

Действующие значения тока, напряжения, мощности и ЭДС – I , U , P , e .

Величина, обратная периоду, численно равна числу периодов в единицу времени (секунду), называется частотой переменного тока: n = ¦ = 1/Т [ ¦ ] = [1 Гц]

Переменный ток, напряжение, мощность и ЭДС изменяются по синусоидальному или косинусоидальному закону, например : i = Imsin ( w t + j ) , где

Im – максимальное (амплитудное) значение переменного тока;

i — мгновенное значение переменного тока;

( w t + j ) – фаза (величина, стоящая под знаком синуса или косинуса);

w = 2 p n – угловая (циклическая) частота [ w ] = [1 рад/с]

j – начальная фаза

Действующее значение переменного тока численно равно такому постоянном току, при котором на резистивном элементе в течение периода выделится столько же тепла, сколько при тех же условиях выделяет переменный ток.

Q 1 = I 2 R Т – количество теплоты, выделенное постоянным током;

Q 2 = ò i 2 Rdt – количество теплоты, которое выделяет переменный ток

по условию Q 1 = Q 2 , тогда I 2 R Т = ò i 2 Rdt Þ I 2 Т = ò i 2 dt , отсюда нам необходимо определить I : I = Ö 1/ T ò i 2 dt

Учитывая, что i = Imsin w t , получим: I = Ö 1/ T [ ò ( Imsin w t ) 2 dt ]

т . к . sin 2 w t = 1/2 — cos2 w t/2 , получим : I = 1/T ò dt/2 – 1/T ò cos2 w tdt/2,

1/ T ò dt /2 =1/2; 1/ T ò cos 2 w tdt /2 = sin 2 w t /2 T w t = 0, т.к. cos – функция периодическая с периодом 2 p , то при вычислении интеграла от косинуса по периоду он всегда будет равен нулю.

Тогда получаем : I = Ö I 2 m/2 = Im/ Ö 2 , т . е . I = Im/ Ö 2

Аналогично можно записать: U = Um / Ö 2 e = e m / Ö 2

Среднее значение переменного тока – это среднее арифметическое значение из всех мгновенных значений за половину периода.

I ср = 2/Т ò idt = 2/Т[ ò Imsin w t dt ] = -(2 Im /Т w ) с os 2 w t = -2 Im /2 p (-1-1) = 2 Im / p

Существует два вида графического изображения переменного тока:

· векторная диаграмма – это совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одной частоты в начальный момент времени.

Для построения векторной диаграммы необходимо в декартовой системе координат отложить вектор, длина которого в масштабе равна амплитудному значению переменной величины, и повернут этот вектор должен быть на угол сдвига фаз по часовой стрелке, если величина начальной фазы отрицательна и против часовой стрелки, если величина начальной фазы положительна.

Например : u = 125 sin ( w t + 20 0 ) i = 12 sin ( w t — 30 0 )

Пусть масштаб будет: 1 клетка = 10 единицам, тгда для напряжения мы должны отложить вектор в 12,5 клеток, повернутый против часовой стрелки на угол в 20 0 , а для тока – вектор в 1,2 клетки, повернутый на угол в 30 0 по часовой стрелке.

  • волновая (временная) диаграмма – это построение графика изменяющейся величины в зависимости от времени.

Например: пусть имеется некоторая величина а, изменяющаяся по синусоидальному закону: а = А m sin ( w t + j ). Для представления этой величины в виде вращающегося вектора построим радиус-вектор А m под углом j к горизонтальной оси. Это будет его исходное положение в исходный момент времени ( t = 0). Пусть радиус-вектор вращается с угловой частотой w = 2 p ¦ против часовой стрелки. В некоторый момент времени t 1 радиус-вектор повернется на угол w t 1 . Его проекция на вертикальную ось будет равна: А m sin ( w t 1 + j ). В момент времени t = t 2 радиус-вектор повернется на угол w t 2 и т.д. Из рисунка следует, что в любой момент времени проекция вектора А m на вертикальную ось будет характеризовать мгновенное значение величины а.

Источник

Векторные диаграммы. Построение векторных диаграмм

ads

При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.

Обоснование векторной диаграммы

Предположим, что ток задан уравнением

Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:

Векторная диаграмма

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе Ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени: i = ImsinΨ.

Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом ωt +Ψ ,

Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.

Следующая статья сложение и вычитания векторов векторной диаграммы.

Например, для t = t1

Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж в начальном положении.

Построение векторной диаграммы

Вращая вектор Im против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.

При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.

В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.

Читайте также:  Источник питания 110 вольт постоянного тока

Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой.

Например, напряжение и ток в электрической цепи выражаются уравнениями:

u = 125 sin(ωt + 30°)

i = 12 sin(ωt — 20°).

Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока

001

Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.

Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

1

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель
но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

3

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Источник



Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Васильев Дмитрий Петрович

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Векторная диаграмма токов и напряжений 1

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

Поэтому при изображении векторных диаграмм один вектор можно направить произвольным образом (например, по оси ОХ).

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Векторная диаграмма токов и напряжений 3

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.
Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

Абрамян Евгений Павлович

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

I = Im /√2.

Векторная диаграмма токов и напряжений 4

Основным преимуществом векторных диаграмм называют возможность простого и быстрого сложения и вычитания 2-х параметров при расчете электроцепей.

Источник

Вопрос 1. Переменный ток, его графическое изображение. Получение переменного тока.

Ответ.

Что такое переменный ток и чем он отличается от тока постоянного
Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению.Такие источники называются генераторами переменного тока. На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока. Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам). Рисунок 1. Схема простейшего генератора переменного тока Убедимся в том, что такое устройство действительно является источником переменной ЭДС. Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС. Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС. В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой. В этом нетрудно убедиться, если использовать для определения направления ЭДС известное намправило правой руки. Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки. Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита. Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется. Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению. ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи. Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток. Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания. Графическое изображение постоянного и переменного токов Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени. Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока). На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным. Рисунок 2. Графическое изображение постоянного и переменного тока Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток. Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА. Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика. То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика. Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА. Построение графика переменной ЭДС Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС. Рисунок 3. Построение графика переменной ЭДС Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки. В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1. При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2). По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой. Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3). При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки. График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5) На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки. Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения. Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС. Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными. Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом. Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток. Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока. Период, амплитуда и частота — параметры переменного тока Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока. Рисунок 4. Кривая синусоидального тока Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах. Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом.Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой. Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока. Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения. Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного. Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением. i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения. Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение. Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т. Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи. Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f Частота переменного тока измеряется единицей, называемой герцем. Если мы имеем переменный ток, частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу. Итак, мы определили параметры переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики. При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту. Круговая частота обозначается буквой ω и связана с частотой f соотношениемω = 2πf Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью. Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f. Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π=3,14. Таким образом, окончательно получим ω = 2πf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.
Читайте также:  Регулируемая защита по току для блока питания

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник