Меню

Как изменяется синусоидальный ток в цепи

Переменный синусоидальный ток

Переменный ток — это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции . Электромагнитная индукция это явление возникновения тока в замкнутом контуре при изменении магнитного потока проходящего через него. Чтобы понять, как именно возникает ток, представим себе рамку (кусочек проволоки прямоугольной формы), которая находится под воздействием магнитного поля B .

Пока рамка находится в покое, тока в ней нет. Но как только мы начнём её поворачивать, электроны, которые находятся в рамке, начнут перемещаться вместе с ней, то есть двигаться в магнитном поле. Вследствие этого магнитное поле начинает действовать на электроны, заставляя их двигаться по рамке. Чем больше линий магнитного поля пронизывает рамку, тем сила действующая на электроны больше, следовательно, и электрический ток тоже. Получается, что ток достигает максимума в момент, когда рамка перпендикулярна магнитному полю (наибольшее количество линии пронизывает рамку) и равен нулю, когда параллельна (наименьшее количество линии пронизывает рамку). Соответственно и сила, которая действует на электроны, тоже изменяется. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.

Ток, который получается при вращении рамки, изменяясь во времени, описывает синусоиду, то есть является синусоидальным. Переменный синусоидальный ток является частным случаем периодического переменного тока. Закон, описывающий изменение тока, имеет вид:

Амплитуда Im – это наибольшая абсолютная величина, которую принимает периодически изменяющийся ток.

Начальная фаза ψ — аргумент синусоидального тока (угол), отсчитываемый от точки перехода тока через нуль к положительному значению.

Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах.

Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. При такой частоте период тока равен , это значит, что за две сотых секунды ток в нашей розетке меняет свое направление два раза.

Угловая частота ω показывает с какой скоростью изменяется фаза тока и определяется как

Среднее значение Iср синусоидального тока за период Т определяют из геометрических представлений: площадь прямоугольника с основанием T/2 и высотой Iср приравнивают площади ограниченной кривой тока:

После упрощения получаем формулу:

Действующее значение синусоидального тока определяется из энергетических представлений: действующий ток равен по величине такому постоянному току I, который в активном сопротивлении R за период Т выделяет такое количество энергии, как и данный ток i. То есть действующее значение, это своеобразная аналогия между переменным и постоянным током.
Для синусоидального тока действующее значение определяется по формуле:

Это основное что нужно знать о переменном синусоидальном токе.

Источник

Лекция № 2 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

1.Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

2. Идеальные резистивный, индуктивный и емкостный элементы в цепях синусоидального тока

1. Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

Токи, напряжения и ЭДС, значения которых периодически изменяются во времени по синусоидальному закону, называют синусоидальными (гармоническими).

По сравнению с постоянным током синусоидальный имеет ряд преимуществ:

производство, передача и использование электрической энергии наиболее экономичны при синусоидальном токе;

в цепях синусоидального тока относительно просто преобразовывать форму напряжения, а также создавать трехфазные системы напряжения.

В зависимости от типа решаемой задачи синусоидальные величины представляют:

— в виде аналитических выражений;
— графически, посредством временной или векторной диаграмм;

Аналитическое представление синусоидальных величин

Синусоидальные ЭДС, напряжение и ток можно задать с помощью вещественных функций времени (в виде аналитических выражений):

где е, u, i — соответственно мгновенные значения ЭДС, напряжения, тока;
— аргументы (фазы) синусоидальных

Для расчета электрических цепей аналитические выражения синусоидальных величин неудобны, т. к. алгебраические действия (сложение, вычитание, умножение и т. д.) с тригонометрическими функциями приводят к громоздким вычислениям.

Временная диаграмма

Графическое представление синусоидальных величин в виде временной диаграммы достаточно наглядно,

I2

но из-за сложности построения синусоид и операций с ними применяется сравнительно редко.

При построении временной диаграммы за аргумент синусоидальной функции, например, напряжения u(t) принимают время t или угол ωt .

Однако для большей наглядности угол φu часто выражают в градусах. Тогда аргумент ωt также переводят в градусы (напомним, что 1 рад » 57,3°). В этом случае период составляет 360°.

Основные параметры синусоидальных величин

Для характеристики синусоидальных функций времени используют следующие параметры:

— Мгновенное значение;
— Амплитуда;
— Период;
— Частота;
— Фаза;
— Начальная фаза;
— Угловая частота;
— Сдвиг фаз;
— Среднее значение гармонической функции;
— Действующее значение гармонической функции.

Цепь с активным сопротивлением

Элементы, обладающие активным сопротивлением R, нагреваются при прохождении через них тока.

Если к активному сопротивлению приложено синусоидальное напряжение

то и ток изменяется по синусоидальному закону

где

или в действующих значениях

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, т.к. их начальные фазы равны

Временная и векторная диаграммы

Активная мощность

Из временной диаграммы следует, что мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению.

Эта мощность (энергия) необратима.

От источника она поступает к потребителю и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется.

Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное преобразование, называется активным.

Количественно мощность в цепи с активным сопротивлением определяется

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин – постоянной мощности и переменной мощности , изменяющейся с двойной частотой

Среднее за период значение переменной составляющей

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учётом закона Ома

Читайте также:  Назначение тахогенераторов постоянного тока

Единица активной мощности

Цепь с идеальной индуктивностью

Идеальной называют индуктивность такой катушки, активным сопротивлением и ёмкостью которой можно пренебречь

Если в цепи идеальной катушки проходит синусоидальный ток

то он создаёт в катушке синусоидальный магнитный поток

Этот поток индуцирует в катушке ЭДС самоиндукции

Эта ЭДС достигает амплитудного значения при

Тогда

ЭДС самоиндукции в цепи с идеальной индуктивностью, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстаёт от тока по фазе на угол π/2.

Согласно второго закона Кирхгофа для мгновенных значений

Тогда напряжение, приложенное к цепи с идеальной индуктивностью

Для существования тока в цепи с идеальной индуктивностью необходимо приложить к цепи напряжение, которое в любой момент времени равно по величине, но находится в противофазе с ЭДС, вызванной этим током

Напряжение достигает своего амплитудного значения при

Следовательно,

Напряжение, приложенное к цепи с идеальной индуктивностью, как и ток в этой цепи, изменяется по синусоидальному закону, но опережает ток по фазе на угол π/2.

Математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью

Знаменатель уравнения – индуктивное сопротивление

Тогда закон Ома будет иметь вид

Индуктивное сопротивление – это противодействие, которое ЭДС самоиндукции оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи с идеальной катушкой индуктивности определяется

Следовательно,

Мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой

Среднее значение этой мощности за период, т.е. активная потребляемая мощность, равно нулю.

В 1-ю и 3-ю четверти периода мощность источника накапливается в магнитном поле индуктивности, а во 2-ю и 4-ю – возвращается к источнику.

В цепи переменного тока с идеальной катушкой мощность не потребляется, а колеблется между источником и катушкой индуктивности, загружая источник и провода

Такая колеблющаяся мощность, в отличие от активной, называется реактивной.

Цепь с ёмкостью

Если к конденсатору ёмкостью С приложено синусоидальное напряжение

то в цепи конденсатора проходит ток

Амплитудное значении тока , следовательно

Ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол π/2.

Математическое выражение закона Ома для цепи переменного тока с ёмкостью

Знаменатель этого выражения является ёмкостным сопротивлением

Тогда выражение для закона Ома будет иметь вид

Ёмкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему.

Реактивная мощность в цепи с идеальным конденсатором

Если в цепи с идеальным конденсатором проходит ток , то

напряжение, приложенное к этому конденсатору будет

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключённым к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой.

Во 2-ю и 4-ю четверти периода мощность источника накапливается в электрическом поле конденсатора. В 1-ю и 3-ю четверти эта мощность из электрического поля конденсатора возвращается к источнику.

В цепи переменного тока с конденсатором происходит колебание мощности между источником и конденсатором.

Величина реактивной мощности в цепи с конденсатором

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник



Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

(3.4)

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

(3.5)

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды кa это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

Под коэффициентом формы кфпонимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

(3.7)

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Читайте также:  В случае причинения вреда жизни или здоровью граждан электрическим током регистрируется учитываются

Положим, что необходимо сложить два тока (i1 и i2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду Iт и начальную фазу ψ тока i. С этой целью ток i1 изобразим на комплексной плоскости (рис. 3.4) вектором = Iе j ψ1 , а ток i2 — вектором = Iе j ψ2 . Геометрическая сумма векторов и I даст комплексную амплитуду суммарного тока Iт = Iт e — jψ 2 . Амплитуда тока Iт определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,Iт стали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Мгновенная мощность.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

(3.14)

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Комплексная проводимость.

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

(3.37)

Единица комплексной проводимости — См (Ом -1 ). Действительную часть ее обозначают через g, мнимую — через b.

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

(3.39)

где Ia — активная составляющая тока;Ir реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов (R, L, С). Схема на рис. 3.32б состоит из источника тока J3 и трех параллельных ветвей. Первая ветвь содержит активную проводимость gэ вторая — емкость Сэ, третья — индуктивность Zэ.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

(3.85)

а для схемы на рис. 3.32б — по методу узловых потенциалов, обозначив потенциал точки а через φа, положив равным нулю потенциал второго узла:

(3.86)

Если параметры gэ, Lэ. Сэ, схемы (рис. 3.32б) согласовать с параметрами R, L, С схемы (рис. 3.32а) таким образом, что

(3.87)

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом 2 , то

(3.88)

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

(3.89)

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток Jэ источника тока в схеме на рис. 3.32б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2 . закон изменения во времени потенциала φ в схеме на рис. 3.32б совпадет с законом изменения во времени тока I в схеме на рис. 3.32а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Zисх исходного двухполюсника и входной проводимостью Yдуал дуального ему двухполюсника существует соотношение Zисх =k Yдуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Хисх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J3 и параметрами gэ, Сэ, Lэ).

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Читайте также:  Ретроградный ток крови что это

Прокрутить вверх

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования.

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Синусоидальный ток и его основные параметры

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока — это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока — это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Математически синусоидальный ток описывается уравнением:

где i — мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im — амплитуда тока.

j — начальная фаза.

w — угловая частота выражается как угловая частота —

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям:

Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Аналитический способ

Для тока: i(t) = Im sin(ωt + ψi), для напряжения: u(t) = Um sin (ωt +ψu), для ЭДС: e(t) = Em sin (ωt +ψe),

Im, Um, Em – амплитуды тока, напряжения, ЭДС;

значение в скобках – фаза (полная фаза);

ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;

ω – циклическая частота, ω = 2πf;

f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени i(t) = Im sin(ωt — ψi).

Графоаналитический способ

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

i1(t) = Im1 sin(ωt)→ i2(t) = Im2 sin(ωt + ψ2) →i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt — ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси

Im sin ψ = Im2 sin ψ2; Im cos ψ = Im2 cos ψ2 + Im1;

Источник