Меню

Как изменяются токи диодов при повышении температуры

Влияние температуры на ВАХ диода

date image2018-01-21
views image18394

facebook icon vkontakte icon twitter icon odnoklasniki icon

температура окружающей среды оказывает существенное влияние на вольт-амперную характеристику диода. С изменением температуры несколько меняется ход как прямой, так и обратной ветви ВАХ.

При увеличении температуры возрастает концентрация неосновных носителей в кристалле полупроводника. Это приводит к росту обратного тока перехода (за счет увеличения тока двух его составляющих: Iо и Iтг), а также уменьшению обьемного сопротивления области базы. При увеличении температуры обратный ток насыщения увеличивается примерно в 2 раза у германиевых и в 2,5 раза у кремниевых диодов на каждые 10 °С. Зависимость обратного тока от температуры аппроксимируется выражением

где: I(Т0)-ток измерен при температуре Т0; Т – текущая температура; Т* — температура удвоения обратного тока — (5-6) 0 С – для Ge и (9-10) 0 С – для Si.

Максимально допустимое увеличение обратного тока диода определяет максимально допустимую температуру диода, которая составляет 80— 100 °С для германиевых диодов и 150 — 200 °С для кремниевых..

Ток утечки слабо зависят от температуры, но может существенно изменяться во времени. Поэтому он, в основном, определяет временную нестабильность обратной ветви ВАХ.

Прямая ветвь ВАХ при увеличении температуры сдвигается влево и становится более крутой (рис.2.2). Это объясняется ростом Iобр (рис.2.2) и уменьшением rб, Последнее, уменьшает падение напряжения на базе, а напряжение непосредственно на переходе растет при неизменном напряжении на внешних выводах.

Для оценки температурной нестабильности прямой ветви вводится температурный коэффициент напряжения (ТКН) aт=DU/DT, показывающий, как изменится прямое напряжение на диоде с изменением температуры на 1 0 С при фиксированном прямом токе. В диапазоне температур от -60 до +60″С aт @-2,3 мВ/°С.

Выпрямительные диоды

Выпрямительные диоды – предназначены для выпрямления низкочастотного переменного тока и обычно используются в источниках питания. Под выпрямлением понимают преобразование двухполярного тока в однополярный. Для выпрямления используется основное свойство диоды – их одностороняя проводимость.

В качествевыпрямительных диодов в источниках питания для выпрямления больших токов используют плоскостные диоды, которые имеют большую площадь контакта р и п областей. Такие диоды обладают большой барьерная емкостью, емкостное сопротивление Xc=1/(ωC) с ростом частоты становится мало и закорачивает (шунтирует) сопротивление перехода гpn, в результате чего выпрямления не выполняется, но это не существенно, т.к. такие диоды используют в низкочастотных схемах. Кроме того такие диоды имеет большую величину обратного тока.

Основные параметры выпрямительных диодов даются применительно к их работе в однополупериодном выпрямителе с активной нагрузкой (без конденсатора, сглаживающего пульсации).

Среднее прямое напряжение Uпр..ср — среднее за период прямое напряжение на диоде при протекании через него максимально допустимого выпрямленного тока.

Средний обратный ток Iобр. ср — средний за период обратный ток, измеряемый при максимальном обратном напряжении.

Максимально допустимое обратное напряжение Uобр. mах (Uобр. и mах) — наибольшее постоянное (или импульсное) обратное напряжение, при котором диод может длительно и надежно работать.

Максимально допустимый выпрямленный ток Iвп. ср mаах— средний за период ток через диод (постоянная составляющая), при котором обеспечивается его надежная длительная работа.

Максимальная частота fмах — наибольшая частота подводимого напряжения, при которой выпрямитель на данном диоде работает достаточно эффективно, а нагрев диода не превышает допустимой величины.

Средняя рассеиваемая мощность диода Рср Д – средняя за период мощность рассеиваемая диодом при протекании тока в прямом и обратном направлении.

Превышение максимально допустимых величин ведет к резкому сокращению срока службы или пробою диода.

Читайте также:  Модуль зарядки акб с регулировкой тока

Улучшая условия охлаждения (вентиляцией, применением радиаторов), можно увеличить отводимую мощность и избежать теплового пробоя. Применение радиаторов позволяет также увеличить прямой ток.

Промышленностью выпускаются кремниевые выпрямительные диоды на токи до сотен ампер и обратные напряжения до тысяч вольт. Если необходимо работать при обратных напряжениях, превышающих допустимые Uобр для одного диода, то диоды соединяют последовательно. Для увеличения выпрямленного тока можно применяться параллельное включение диодов.

Однополупериодный выпрямитель (рис.2.6). Трансформатор предназначен для понижения амплитуды переменного напряжения. Диод служит для выпрямления переменного тока. Временные диаграммы, поясняющие процесс работы однополупериодного выпрямителя представлены на рис.2.7.

2) Двухполупериодный выпрямитель. Предыдущая схема имеет существенный недостаток. Он состоит в том, что не используется часть энергии первичного источника питания (отрицательный полупериод). Недостаток устраняется в схеме двухполупериодного выпрямителя.

В первый положительный (+) полупериод, ток протекает так : +, VD3, , VD2, — . Во второй – отрицательный (-) так: +, VD4, , VD1,- . В обоих случаях он через нагрузку протекает в одном направлении ↓- сверху вниз, т.е. происходит выпрямление тока.

2.5 Импульсные диоды

Импульсные диоды – это диоды, которые предназначены для работы в ключевом режиме в импульсных схемах. Диоды в таких схемах выполняют роль электрических ключей. Электрический ключ имеет два состояния:

1. Замкнутое, когда его сопротивление равно нулю Rvd =0.

2. Разомкнутое, когда его сопротивление бесконечно Rvd=∞.

Этим требованиям удовлетворяют диоды в зависимости от полярности приложенного напряжения. Они имеют малое сопротивление при смещениях в прямом направлении, и большое сопротивление при смещениях в обратном направлении

3. Важным параметром переключающих диодов является их быстродействие переключения. Факторами, ограничивающими скорость переключения диода, является:

а) ёмкость диода.

б) скорость диффузии и связанные с ней время накопления и рассасывания неосновных носителей заряда.

В импульсных диодах высокая скорость переключения достигается уменьшением площади p-n-перехода, что снижает величину ёмкости диода. Однако, это уменьшает величину максимального прямого тока диода (Iпрям.max.). Импульсные диоды характеризуются теми же параметрами, что и выпрямительные, но имеют так же и специфические, связанные с быстродействием переключения. К ним относятся:

1) Время установления прямого напряжения на диоде (tуст ):

tуст. – время, за которое напряжение на диоде при включении прямого тока достигает своего стационарного значения с заданной точностью. Это время связанно со скоростью диффузии состоит в уменьшением сопротивления области базы за счёт накопления в ней неосновных носителей заряда инжектируемых эмиттером. Первоначально оно высоко, т.к. мала концентрация

носителей заряда. После подачи прямого напряжения концентрация неосновных носителей заряда в базе увеличивается, это снижает прямое сопротивление диода.

2) Время восстановления обратного сопротивления диода (tвосст.): определяется как время, в течение которого обратный ток диода после переключения полярности приложенного напряжения с прямого на обратное достигает своего стационарного значения с заданной точностью. Это время связано с рассасыванием из базы неосновных носителей заряда накопленных при протекании прямого тока.

tвосст. – время, за которое обратный ток через диод при его переключении достигает своего стационарного значения, с заданной точностью I, обычно 10% от максимального обратного тока.

t1. – время рассасывания, за которое концентрация неосновных носителей заряда на границе р-п-перехода обращается в ноль.

t2. – время разряда диффузионной емкости, связанное рассасыванием неосновных зарядов в объме базы диода.

В целом время восстановление это время выключения диода, как ключа.

Диоды Шотки.

Электрический переход, возникающий на границе металл – полупроводник, при определенных условиях обладает выпрямительными свойствами. Он создаётся путём напыления металла на высокоомный полупроводник, например, n-типа. Прибор на основе такого перехода называется диодом Шотки. Главная особенность этого диода – это отсутствие неосновных носителей заряда в процессе его работы. Прямой ток обусловлен электронами, движущимися из кремния в металл. Следовательно, практически отсутствуют процессы их накопления и рассасывания, а потому диоды Шоттки имеют высокое быстродействие переключения.

Читайте также:  Отучить собаку подбирать током

Другой особенностью этих диодов является малое (по сравнению с обычными кремниевыми диодами) прямое напряжение, составляющее около 0,15В. Это связано с тем, что тепловой ток примерно на три порядка превышает ток р-n- перехода.

В импульсных схемах диоды Шоттки широко используются в комбинации с транзисторами. Такие транзисторы называются транзисторами Шотки – они имеют высокое быстродействие переключения.

Источник

Большая Энциклопедия Нефти и Газа

Температура — диод

Температура диода в силу тепловой инерции может меняться только непрерывно. [1]

При увеличении температуры диода уменьшается высота потенциального барьера ( см. § 2.1) и изменяется распределение носителей заряда по энергиям — электроны, например, занимают более высокие энергетические уровни в зоне проводимости. [3]

На ВАХ влияет температура диода . С увеличением температурь существенно возрастает обратный ток, а прямой ток изменяется незначительно. При приложении к диоду переменного напряжения проявляется емкость р-п перехода. Различают барьерную и диффузионную емкости. [5]

Действительно, отклонение температуры диода от Граб в сторону снижения приводит к тому, что выделяемая в диоде мощность станет больше отводимой ( кривая Рвыд выше Ротв), следовательно, температура диода будет расти. Наоборот, не очень большое отклонение температуры вверх приводит к тому, что выделяемая мощность станет меньше отводимой и диод будет охлаждаться. [7]

Пробивное напряжение зависит от температуры диода . Характер этой зависимости определяется параметрами полупроводникового материала, из которого изготовлен диод, и его конструкцией. Однако для большинства диодов с увеличением температуры пробой наступает при меньших напряжениях. Причем для высоковольтных диодов эта зависимость проявляется сильнее. [9]

Спад яркости свечения возрастает с увеличением температуры диода , причем степень спада пропорциональна полному заряду, прошедшему через диод. Время полуспада экспоненциально зависит от температуры; энергия активации процесса старения, полученная из такой зависимости, заметно уменьшается в присутствии ионов меди. [11]

Недостатком полупроводниковых выпрямителей является зависимость выпрямленного тока и напряжения пробоя от температуры диодов . [13]

Необходимо иметь в виду, что время зависит от скорости спада тока di Jdt, температуры диода и в меньшей степени от уровня прямого тока диода ID. С ростом л / dt ( по абсолютной величине) оно падает, а при увеличении температуры — растет. [14]

Величина выпрямленного тока в значительной степени зависит от условий охлаждения диода и должна выбираться такой, чтобы температура диода не превышала указанных пределов. [15]

Источник



Влияние температуры на параметры и характеристики диодов

При изменении температуры корпуса диода изменяются его параметры. Наиболее сильно зависят от температуры прямое напряжение на диоде UПР и его обратный ток I.

Смещение прямой ветви ВАХ диода при изменении температуры оценивается температурным коэффициентом напряжения (ТКН)

Для оценки влияния температуры можно считать, что

ТКН = — 2 мВ/ 0 С

Обратный ток I обусловлен термогенерацией пар носителей в нейтральных p- и n-областях, прилегающих к обедненному слою.
Эта составляющая обратного тока сильно зависит от температуры и практически не зависит от приложенного напряжения.

Для оценки влияния температуры на обратный ток I (IT) можно считать, что этот ток увеличивается в 2.5 раза при увеличении температуры на каждые 10 0 С (для Si).

Читайте также:  Чем опасны поражения электрическим током санминимум

Обратная ветвь диодов до напряжения пробоя практически сливается с осью напряжения для температур 40 – 50 0 С для кремниевых структур.

Общее обозначение диодов

Для экспериментального получения прямой ветви диода и определения параметров
смоделируем схему измерения

Для экспериментального получения прямой ветви диода и определения параметров
смоделируем схему измерения

На основании измеренных данных строится прямая ветвь диода

Применение выпрямительных диодов

Диоды применяются для преобразования переменного напряжения в частности синусоидальной формы в постоянное напряжение.

Выпрямление переменного напряжения

Разделение разнополярных сигналов

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Температурные свойства полупроводниковых диодов

На электропроводность полупроводников значительное влияние оказывает температура. При повышении температуры усиливается генерация пар носителей заряда, т. е. увеличивается концентрация носителей и проводимость растет. Поэтому свойства полупроводниковых диодов сильно зависят от температуры. Это наглядно показывают вольт-амперные харак­теристики, снятые при различной температуре (рис. 3.5). Как видно, при повышении температуры прямой и обратный токи растут. Очень сильно увеличивается обратный ток, что объясняется уси­лением генерации пар носителей. Для германиевых диодов обратный ток возрастает примерно в 2 раза при повышении температуры на каждые 10 °С.

Рис. 3.5. Влияние температуры на вольт-амперную ха­рактеристику диода

Это можно выразить следующей формулой:

Следовательно, если температура поднялась с 20 до 60 °С, то Iобр уве­личивается в 2 4 , т.е. в 16 раза. У кремниевых диодов при нагреве на каждые 10 °С обратный ток увеличи­вается примерно в 2,5 раза.

С повышением температуры несколько возрастает барьерная емкость диода. Температурный коэффициент емкости (ТКЕ), показывающий относительное из­менение емкости при изменении температуры на один градус, равен 10 -4 — 10 -3 K -1 .

Рабочий режим диода

В практических схемах в цепь диода включается какая-либо нагрузка, напри­мер резистор RH (рис. 3.6,а)Прямой ток проходит тогда, когда анод имеет положительный потенциал относительно катода.

Рис. 3.6. Схема включения диода с нагрузкой и построение линии нагрузки

Диод является нелинейным сопротивлением, и значение сопротивления диода по постоянному току RF изменяется при изменении тока. Поэтому расчет тока делают графически. Задача состоит в следующем: известны Е, RH и характеристика диода, требуется определить ток в цепи и напряжение на диоде.

Характеристику диода следует рассматривать как график уравнения (3-1), связывающего величины I и U. А для сопротивления нагрузки RH подобным уравне­нием является закон Ома:

Итак, имеются два уравнения с двумя неизвестными I и U, причем уравнение (3.1) дано графически. Для решения такой системы уравнений надо построить график второго уравнения (3.7) и найти координаты точки пересечения двух гра­фиков.

Уравнение для сопротивления RH это уравнение первой степени относительно I и U. Его графиком является прямая линия, называемая линией нагрузки. Проще всего она строится по двум точкам на осях координат. При I = 0 из уравнения (3-7) получаем:

Е — U= 0 или U = Е,

что соответствует точке А на рис. 3.6,б. А если U = 0, то:

Откладываем этот ток на оси ординат (точка Б). Через точки А и Б проводим прямую, которая является линией нагрузки (ЛН). Координаты точки Q дают решение поставленной задачи.

Свойства последовательной цепи зависят главным образом от свойств участка цепи, имеющего большее сопротивление. Поэтому чем больше сопротивление RН тем меньше нелинейность результирующей характеристики. Следует отметить, что графический расчет рабочего режима диода можно не делать, если RH » Rпр. В этом случае допустимо пренебречь сопротивлением диода и определять при­ближенно ток по формуле IЕ/RH.

Источник