Меню

Как найти амплитудное значение силы тока формула

Физика. 11 класс

Законы переменного электрического тока

Переменный электрический ток

Необходимо запомнить

Рассмотрим цепь содержащую проводник сопротивлением R.

R – активное сопротивление.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

$i=I_m \cos \omega t$

$i$ – мгновенное значение силы тока,

$I_m$– амплитудное значение силы тока.

$u=U_m \cos \omega t$ – колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулой:

$e=-<Ф>‘=BSN \omega \sin \omega t$, $\varepsilon_m=BSN \omega $,

$U_m$– амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Средняя мощность равна $P=I^2R$.

Конденсатор включённый в цепь переменного тока оказывает сопротивление называемое ёмкостным – $X_С$.

Катушка индуктивности в цепи переменного тока оказывает сопротивление называемое индуктивным – $X_L$.

Если цепь содержит активное сопротивление, катушку и конденсатор соединённые последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Мощность цепи переменного тока:

Величина $cos \varphi$ – называется коэффициентом мощности.

Решение задачи на электромагнитные колебания

В чём преимущество переменного тока в отличие от постоянного?

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. В чём же недостаток постоянного тока? Основная проблема – передача электроэнергии на расстояния. Передача электроэнергии с помощью постоянного тока сопровождалось большими потерями электроэнергии в проводах. Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров.

Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. В 1888 году Тесла представил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Особенно большое развитие получило применение переменного тока после появления выпрямителей, способных преобразовывать переменный ток в постоянный, что стало удобно для всех приёмников.

НАШИ ПАРТНЁРЫ

Минпросвещения России Российское образование Рособрнадзор Русское географическое общество Российское военно-историческое общество Президентская бибилиотека

© Государственная образовательная платформа «Российская электронная школа»

Источник

Сигналы: синусоида, меандр, пила и треугольник

Синусоида (синус) — самый наш идеальный и необходимый вариант. Используется на выходе из генераторов для передачи на расстояния и затем используется вами из розетки (какой ток в розетке?). Самый распространенный сигнал, вероятно, если я чего-то не знаю. Рассмотрим основные элементы графика переменного тока:

действующее, амплитудное, среднее и мгновенные значения тока на синусоиде

Период — это время, через которое функция начинает повторяться, величина обратная частоте. Обозначается буквой Т. Т=2тт/w.

тт — так почему-то в интернетах принято обозначать число “пи”, против толпы не попрешь, так сказать, хотя можно просто 3,14 написать или “пи”. Дело вкуса.

формулы для расчета действующего, амплитудного и среднего значений для синусоиды

Амплитудное значение (амплитуда) — значения, в которых график синусоиды достигает максимумов. То есть для синусоиды таких значения два на период — положительное и отрицательное.

Действующее значение — это 0,707 от амплитудного значения. Есть у нас цепь — в этой цепи за время Т1 постоянный ток определенной величины I1 выделит определенное количество тепла Q1, если в той же цепи пустить переменный ток, то за тоже время Т1 он выделит такое же количества тепла Q1 при действующем значении равном I1. И это значение I1 для синусоиды будет равно 0,707 от амплитудного — что означает единица делить на корень из двух. Если вам интересно, откуда это такое взялось, то плиз велком:

вывод формулы расчета действующего значения тока для синусоиды

Мгновенное значение — значение величины в определенный момент времени. Если посмотреть на синусоиду, то видно, что мгновенное значение постоянно передвигается и на протяжении одного периода постоянно меняет свои значения. В следующем периоде опять идет тем же путем. Остановись мгновение =) Значение мгновенного значения определяется как Im*sin(wt) — амплитудное значение умноженное на “синус омега тэ” — где “омега тэ” — произведение угловой скорости на момент времени. Омега равно два пи делить на период Т.

Среднее значение — сумма всех мгновенных значений за полпериода. Для синусоиды равно 0,6366197730950255438113531364418

Читайте также:  Сила тока в искре

0,637 от амплитудного значения. Если вновь стало интересно, откуда число, то ответ ниже на примере переменного тока:

вывод формулы среднего тока для синусоиды

Если амплитудное значение разделить на действующее значение, то мы получим, правильно корень из двух для синусоиды — его еще называют коэффициентом амплитуды. Если же мы разделим действующее значение на среднее — то получим для синусоиды 1,11 — это отношение называется коэффициентом формы кривой.

Сколько инженеров, столько и форм кривых в электронике, а если серьезно, то существуют например такие: Форма сигнала меандр — сигнал, в котором отсутствуют четные гармоники, имеет прямоугольную форму. В отличие от прямоугольного импульса, у которого длительность сигнала и длительность паузы могут отличаться, у меандра они равны. Сигнал такой формы может встречаться в импульсных источниках бесперебойного питания и прочих электронных схемах, ШИМ.

рисунок формы сигнала меандр

Пилообразный сигнал — сигнал пилообразной формы может идти и в одну сторону и в другую (знак минус в формуле функции). Для создания этой и других форм сигналов применяются генераторы сигналов. Применяются в старых осциллографах, мониторах, как и треугольные.

сигнал пилообразной формы

и пилообразный сигнал в другом направлении

Треугольный сигнал — у треугольного сигнала длина роста и длина падения равны.

сигнал треугольной формы

Каждая из этих форм может быть представлена через преобразование фурье, смысл которого в разбиении функции на гармонические составляющие от единицы до бесконечности с набором определенных гармоник — нечетных например, как для меандра. В функциях выше, которые были построены в маткаде, смысл построения в следующем, чем больше составляющих вы берете для построения (ближе к бесконечности), тем красивее получается график.

Сохраните в закладки или поделитесь с друзьями

Источник



Теоретические основы. Электрическое напряжение. Сила переменного, постоянного тока. Мощность. Действующее, эффективное, амплитудное значения

Немного теории об электрике. Постоянный и переменный ток. Действующие, эффективные, амплитудные значения напряжения. Мощность (10+)

Самоучитель электрика — Теоретические основы

Теоретические основы

Электрическое напряжение и сила тока

Не думаю, что имеет смысл останавливаться на формальном определении напряжения и силы тока. Лучше объясню на примерах.

Электрическое напряжение влияет на то, насколько тщательно надлежит изолировать проводники. Чем выше напряжение, тем больше вероятность пробоя изоляции. На более высокое напряжение нужна более надежная изоляция. Оголенные провода под более высоким напряжением нужно размещать дальше друг от друга, от других электропроводных материалов и от земли. Электрическое напряжение измеряется в вольтах (В).

Более высокое напряжение представляет большую опасность. Но не следует думать, что низкое напряжение совершенно безопасно. Ущерб здоровью от электрического удара зависит от силы тока, который прошел через организм и его траектории. А сила тока уже зависит от напряжения и сопротивления. Сопротивление человеческого организма определяется сопротивлением кожного покрова. Внутренние органы и среды отлично проводят ток. Сопротивление кожи может меняться в десятки раз в зависимости от эмоционального состояния, физической нагрузки, влажности и еще десятка факторов. Отмечены случаи смертельного удара электрического тока напряжением 12 вольт.

Сила электрического тока определяет, какие провода нужно использовать. Чем выше сила тока, тем толще провод нужен. Сила электрического тока измеряется в амперах (А).

Переменный и постоянный ток

В самом начале эры электричества потребителям пытались подводить постоянный ток. Но возникла проблема. Транспортировать на большие расстояния электрическую энергию напряжением 220 вольт невозможно. С другой стороны, подводить к домам напряжение в несколько тысяч вольт опасно, да и конструировать бытовые приборы, работающие от такого напряжения, очень сложно, а производить — дорого. Встал вопрос о преобразовании напряжения. Нужно было довести до поселка напряжение в 10 тысяч вольт, а в поселке получить и развести по домам 220 вольт. В результате перешли на переменный ток. Напряжение переменного тока легко преобразовывать. Делается это с помощью трансформатора. Производить такое напряжение тоже не сложно. Генераторы переменного тока оказались даже проще генераторов постоянного.

Сейчас преобразовывать постоянное напряжение тоже перестало быть проблемой. Но экономического смысла в переходе обратно на постоянный ток нет.

В настоящий момент бытовая электрическая сеть запитана переменным электрическим напряжением с частотой 50 Гц. Напряжение изменяется по синусоидальному закону. Это означает, что напряжение в сети 50 раз в секунду выполняет следующий маневр. Оно от нуля постепенно возрастает до амплитудного значения 310 вольт, затем убывает до нуля и далее до -310 вольт, потом опять возрастает до нуля. Этот цикл постоянно повторяется. В этом случае говорят, что напряжение в сети равно 220 вольт. О том, почему не 310, чуть позже.

Читайте также:  Как изменится ток двигателя если полностью закрыть выхлопное отверстие вентиляционной установки

За рубежом встречается напряжение сети 220, 127 и 110 вольт, частота 50, 60 Гц.

Мощность, действующее (эффективное) и амплитудное значение напряжения и тока

Электрический ток нам нужен для того, чтобы производить некоторую работу (вращать двигатели, греть батареи и т. д.). То, какую работу может выполнить электрический ток за одну секунду, можно определить, умножив напряжение на силу тока. Так, если мы говорим, что электронагреватель, рассчитанный на 220 вольт, имеет мощность 2.2 кВт, это означает, что он будет потреблять электрический ток 10 А. Наша лампочка 100 Вт потребляет 0.45 А.

Мощность измеряется в ваттах (Вт). Электрический ток силой 1 А при напряжении 1 В выделяет мощность 1 Вт.

Приведенная формула верна как для постоянного, так и для переменного тока. Но для переменного тока она усложняется. Нужно перемножить значение силы тока на напряжение в каждый момент времени, просуммировать и разделить на длительность этого момента. А у переменного тока напряжение и сила постоянно меняются. Выполнить такие вычисления не сложно, но трудоемко, нужно брать интеграл. Поэтому введено понятие действующего (эффективного) значения напряжения и силы тока.

Действующее значение, грубо говоря, это некоторое усредненное значение силы тока и напряжения, подобранное таким образом, чтобы при подключении нагрузки рассеиваемая мощность была равна их произведению.

Для переменного тока говорят о амплитудном и действующем значениях напряжения и силы тока. Амплитудное значение — максимально возможное значение, до которого повышается напряжение (сила тока). Для синусоидального переменного тока амплитудное значение равно действующему, умноженному на корень квадратный из двух. Вот откуда берется 310 и 220 вольт. 310 — амплитудное значение напряжения, а 220 — действующее.

В бытовой сети переменного тока нередко напряжение отличается от 220 вольт. Некоторые электроприборы к этому чувствительны, тогда применяются стабилизаторы переменного напряжения.

Способность пробивать изоляционные материалы и оказывать поражающее действие зависит от амплитудного значения напряжения. Способность производить полезную работу или выделять тепловую энергию зависит от действующего значения напряжения.

Требования к проводу и электрическим соединениям определяются действующим значением силы тока.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Задать вопрос электрику онлайн Здесь Вы можете спросить меня про электропроводку, электрику и другие тонкости электромонтажа. Читать дальше.

Сварочный ток. Положение электрода. Резка металла сваркой.
Оптимальные сварочный ток и положение электрода. Резка сваркой.

Мобильный интернет, модем, Wi-Fi адаптер завешивает, подвешивает компь.
Подключение мобильного модема или Wi-Fi адаптера в USB завешивает компьютер. Что.

Почему крошится, трескается, разрушается бетон в фундаменте, дорожке, .
Залили летом дорожку и фундамент. После зимы видны серьезные разрушения, наблюда.

Чтобы не замерз наружный водопровод. Правильное строительство, прокл.
Водопровод своими руками. Внешний, незамерзающий. Прокладка водопроводных труб з.

Заземление ноутбука или телевизора, чтобы не бил электричеством.
Как заземлить бытовой прибор в пластмассовом корпусе: ноутбук, телевизор и други.

Электростанция, резервный, автономный электрогенератор. Дизельгенерато.
Как установить и подключить резервный автономный генератор. Практический опыт, о.

Источник

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Период переменного тока

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

Читайте также:  Как ток протекает через резистор

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Формула частота переменного токаФормула период переменного тока

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2pi.

Радиан

Рисунок 2. Радиан.

1рад = 360°/2pi

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2pi). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2fpi

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник