Меню

Как сравнить работы электрического тока

Работа и мощность электрического тока

теория по физике 🧲 постоянный ток

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.

Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:

Но сила тока равна:

Тогда работа тока равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:

A = I 2 R Δ t = U 2 R . . Δ t

Работа тока измеряется в Джоулях (Дж).

Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.

A = I U Δ t = 16 · 220 · 10 = 35200 ( Д ж ) = 35 , 2 ( к Д ж )

Закон Джоуля-Ленца

В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.

Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Количество теплоты измеряется в Джоулях (Дж).

Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.

Используем закон Ома и закон Джоуля—Ленца:

Q = I 2 R Δ t = ( U R . . ) 2 Δ t = U 2 R . . Δ t = 12 2 2 . . = 72 ( Д ж )

Мощность тока

Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.

Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).

Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:

P = I U = I 2 R = U 2 R . .

Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.

P = I 2 R = 0 , 3 2 · 10 = 0 , 9 ( В т )

Выразив силу тока через заряд, прошедший за единицу времени, получим:

Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:

P = ( ε R + r . . ) 2 R

Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.

P m a x = ( ε r + r . . ) 2 r = ε 2 4 r . .

Мощность тока внутренней цепи:

P в н у т р = I 2 r = ( ε R + r . . ) 2 r

P п о л н = I 2 ( R + r ) = ε 2 R + r . .

Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?

Используем формулу для нахождения полезной мощности:

P = ( ε R + r . . ) 2 R

Применим закон Ома для полной цепи:

Выразим сопротивление внешней цепи:

P = ( ε ε I . . − r + r . . ) 2 ( ε I . . − r ) = I 2 ( ε I . . − r ) = I ε − r I 2

Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:

r I 2 − I ε + P = 0

I 2 − 1 I + 0 , 75 = 0

Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.

Подсказки к задачам

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

W = q 2 2 C . . = C U 2 2 . .

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

Читайте также:  Электромагнитная индукция закон электромагнитной индукции вихревые токи

Применим закон Ома:

Приравняем правые части выражений и получим:

Отсюда напряжение на конденсаторе равно:

Напряженность электрического поля равна:

E = U d . . = ε R d ( R + r ) . . = 9 · 8 0 , 002 ( 8 + 1 ) . . = 72 0 , 018 . . = 4000 ( В м . . )

Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?

Источник

Работа и мощность электрического тока

Урок 72. Физика 10 класс

Доступ к видеоуроку ограничен

Конспект урока «Работа и мощность электрического тока»

Все вы прекрасно знаете, что сегодня электрический ток используется повсеместно. С его помощью работают компьютеры и телевизоры, ноутбуки и планшеты. С помощью электрического тока обеспечивается освещение улиц и различных помещений. Стиральная машина, микроволновка, утюг и многие другие приборы — все они работают на электрическом токе. Все это говорит нам о том, что ток несет в себе энергию, а, значит, с его помощью можно совершать работу.

Как мы уже убедились, при протекании тока, электрическое поле совершает определенную работу. Эта работа называется работой тока. Рассмотрим произвольный участок цепи, находящийся под некоторым напряжением U. За некоторый промежуток времени t, через поперечное сечение проводника пройдет определенный заряд q. Как вы знаете, работа электрического поля по переносу заряда определяется как произведение этого заряда и напряжения:

Также мы знаем, что заряд можно выразить как произведение силы тока и времени:

Тогда получим формулу, с которой вы уже знакомы из курса физики восьмого класса: работа тока равна произведению силы тока, напряжения и времени, в течение которого шел ток:

Используя закон Ома для участка цепи, мы можем получить еще два эквивалентных выражения.

При последовательном соединении удобнее использовать формулу, в которой нет напряжения, поскольку сила тока на всем участке цепи одинакова. Аналогично, при параллельном подключении удобнее использовать формулу, в которой нет силы тока, поскольку напряжение на всех элементах участка цепи одинаково.

Исходя из закона сохранения энергии, работа равна изменению энергии рассматриваемого участка цепи:

Если предположить, что на этом участке не совершается механическая работа и не происходят химические реакции, то можно заключить, что вся работа электрического тока идет на нагревание проводника. Именно к такому выводу, пришли ученые Джеймс Джоуль и Эмилий Ленц, работая независимо друг от друга. Поэтому, открытый ими закон получил название «закон Джоуля-Ленца». Итак, закон Джоуля-Ленца звучит следующим образом: количество теплоты, выделяемой проводником с током равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику:

Нагревание проводников происходит следующим образом: при протекании электрического тока по проводнику, электроны неизбежно сталкиваются с ионами кристаллической решетки. В результате, ионы приобретают все бо́льшую и бо́льшую кинетическую энергию, то есть их движение становится более интенсивным. Это, как мы знаем из молекулярной физики, и означает повышение температуры.

Помимо работы тока, есть еще одна важная величина, которой характеризуются все электроприборы — это мощность электрического тока. Как вы знаете, мощность определятся как работа, произведенная в единицу времени. Таким образом, мощность равна отношению работы к промежутку времени, за который эта работа была совершена:

Опять же, используя закон Ома, мы можем получить еще два равноправных выражения для мощности:

Как видно из формулы, мощность измеряется в джоулях на секунду. Напомним, что такая единица измерения называется ваттом:

Необходимо отметить, что есть и другие единицы измерения работы и мощности электрического тока. Например, для измерения работы электрического тока на практике часто используется такая единица измерения, как киловатт-час. Как видно из названия этой единицы измерения, работа в 1 кВт ∙ час — это работа, совершаемая прибором мощностью 1 кВт за 1 час:

Когда мы платим за электроэнергию, мы платим именно за количество киловатт-часов. То есть, существует тариф за использование одного киловатт-часа энергии, в соответствии с которым нам и приходит счет за электроэнергию в конце месяца.

Внесистемной единицей измерения мощности, которая часто используется на практике, является лошадиная сила. В этих единицах измерения, как правило, измеряется мощность многих автомобильных двигателей:

Читайте также:  Что такое ток что заставляет электроны двигаться

Пример решения задачи.

Задача. На рисунке указана схема смешанного подключения резисторов. Найдите работы тока, в резисторах R𝟐 и R3 за 1 мин.

Источник



Работа и мощность электрического тока. Закон Джоуля-Ленца

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​ \( (U) \) ​ на участке цепи равно отношению работы ​ \( (F) \) ​, совершаемой при перемещении электрического заряда ​ \( (q) \) ​ на этом участке, к заряду: ​ \( U=A/q \) ​. Отсюда ​ \( A=qU \) ​. Поскольку заряд равен произведению силы тока ​ \( (I) \) ​ и времени ​ \( (t) \) ​ ​ \( q=It \) ​, то ​ \( A=IUt \) ​, т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

​ \( [A] \) ​= 1 Дж = 1 В · 1 А · 1 с

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​ \( A=\fract \) ​ или ​ \( A=I^2Rt \) ​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​ \( P=A/t \) ​ или ​ \( P=IUt/t \) ​; ​ \( P=IU \) ​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​ \( [P]=[I]\cdot[U] \) ​; ​ \( [P] \) ​ = 1 А · 1 В = 1 Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​ \( P=\frac;P=I^2R \) ​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​ \( Q=A \) ​ или ​ \( Q=IUt \) ​. Учитывая, что ​ \( U=IR \) ​, ​ \( Q=I^2Rt \) ​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ \( R_1 \) ​ в четыре раза меньше сопротивления резистора ​ \( R_2 \) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

Читайте также:  Как с помощью электроскопа можно выяснить проводит ли данные вещества электрический ток

4. Сопротивление резистора ​ \( R_1 \) ​ в 3 раза больше сопротивления резистора ​ \( R_2 \) ​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ \( A_1 \) ​ и ​ \( A_2 \) ​ в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) ​ и ​ \( A_2 \) в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Источник

Работа и мощность тока: как мы платим за электроэнергию?

Мы используем электричество с определенными целями. Электрический ток выполняет какую-то работу, вследствие этого и функционируют наши электроприборы. Что же такое – работа электрического тока? Известно, что работа тока по перемещению электрического заряда на некотором отрезке цепи равна численно напряжению на этом участке. Если же заряд будет отличаться, например, в большую сторону, то и работа, соответственно, будет совершена большая.

Работу, которую электрическое поле совершает над свободными зарядами в проводнике называют работой тока

Мощность электрического тока

где P — мощность тока. Мощность измеряется в ваттах (1 Вт). Применяют кратные величины – киловатты, мегаватты.

Работа и мощность электрического тока связаны теснейшим образом. Фактически, работа – это мощность тока в каждый момент времени, взятая за определенный промежуток времени. Именно поэтому счетчики в

Источник