Меню

Какое направление токов принимается за положительное

Постоянный электрический ток

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Читайте также:  Нахождение силы тока в цепи через эдс

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Читайте также:  Кто проводит электрический ток металлы или неметаллы

Источник

1.2 Положительные направления тока и напряжения

Электрический ток в проводящей среде есть упорядоченное движение электрических зарядов. Известно, что электрический ток проводимости в металлах, так же как и ток переноса в электровакуумных приборах, представляет собой перемещение отрицательно заряженных частиц (электронов), а ток проводимости в электролитах и газах — перемещение как положительно, так и отрицательно заряженных частиц (ионов).

Электрическому току приписывается направление. Хотя в общем случае ток представляет собой движение электрических зарядов того и другого знака в разные стороны, однако, за направление тока принимают направление перемещения положительных зарядов; это направление противоположно направлению движения отрицательных зарядов.

Численно ток определяется как предел отношения количества электричества, переносимого заряженными частицами сквозь рассматриваемое поперечное сечение проводника за некоторый промежуток времени, к этому промежутку времени, когда последний стремится к нулю. Следовательно, если обозначить через q количество электричества, прошедшего через рассматриваемое сечение проводника за время t, то мгновенное значение тока, т. е. значение его в любой момент времени t, определится как производная q по t

Здесь q = q+ + q-, где q+ и q- — положительный и отрицательный заряды, переместившиеся в противоположные стороны за время t. В Международной системе единиц ток i измеряется в амперах (А), заряд q — в кулонах (К) или амперсекундах (А×с), время t — в секундах (с).

Электрический ток может быть постоянным (неизменяющимся) или переменным, т.е. изменяющимся в зависимости от времени.

Направление тока характеризуется знаком тока. Понятия положительный ток или отрицательный ток имеют смысл, только если сравнивать направление тока в проводнике с некоторым заранее выбранным ориентиром — так называемым положительным направлением.

Источник



ПОЛОЖИТЕЛЬНЫЕ НАПРАВЛЕНИЯ ТОКА И НАПРЯЖЕНИЯ

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ЗАКОНЫ, ЭЛЕМЕНТЫ

И ПАРАМЕТРЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Электрической цепью называется совокупность устройств, предназначаемых для прохождения электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий напряжения и тока. В общем случае электрическая цепь состоит из источников и приемников электрической энергии и промежуточных звеньев (проводов, аппаратов), связывающих источники с приемниками.

Источниками электрической энергии являются гальванические элементы, аккумуляторы, термоэлементы, генераторы и другие устройства, в которых происходит процесс преобразования химической, молекулярно-кинетической, тепловой, механической или другого вида энергии в электрическую. К источникам можно отнести и приемные антенны, в которых в отличие от перечисленных выше устройств не происходит изменения вида энергии.

Приемниками электрической энергии, или так называемой нагрузкой, служат электрические лампы, электронагревательные приборы, электрические двигатели и другие устройства, в которых электрическая энергия превращается в световую, тепловую, механическую и т. п. К нагрузкам относятся и передающие антенны, излучающие электромагнитную энергию в пространство.

Расчеты электрических цепей и исследования процессов, происходящих в них, основываются на различных допущениях и некоторой идеализации реальных объектов электрических цепей. Под элементами в теории электрических цепей подразумеваются обычно не физически существующие составные части электротехнических и радиотехнических устройств, а их идеализированные модели, которым теоретически приписываются определенные электрические и магнитные свойства так, что они в совокупности приближенно отображают явления, происходящие в реальных устройствах.

В теории электрических цепей различают активные и пассивные элементы.

Активными элементами считаются источники электрической энергии: источники напряжения и источники тока. К пассивным элементам электрических цепей относятся сопротивления, индуктивности и емкости. Соответственно различают активные и пассивные цепи; активные цепи содержат источники электрической энергии, пассивные же цепи состоят только из пассивных элементов.

ПОЛОЖИТЕЛЬНЫЕ НАПРАВЛЕНИЯ ТОКА И НАПРЯЖЕНИЯ

Электрический ток в проводящей среде есть упорядоченное движение электрических зарядов. Известно, что электрический ток проводимости в металлах, так же как и ток переноса в электровакуумных приборах, представляет собой перемещение отрицательно заряженных частиц (электронов), а ток проводимости в электролитах и газах — перемещение как положительно, так и отрицательно заряженных частиц (ионов).

Электрическому току приписывается направление. Хотя в общем случае ток представляет собой движение электрических зарядов того и другого знака в разные стороны, однако, за направление тока принимают направление перемещения положительных зарядов; это направление противоположно направлению движения отрицательных зарядов.

Численно ток определяется как предел отношения количества электричества, переносимого заряженными частицами сквозь рассматриваемое поперечное сечение проводника за некоторый промежуток времени, к этому промежутку времени, когда последний стремится к нулю. Следовательно, если обозначить через q количество электричества, прошедшего через рассматриваемое сечение проводника за время t, то мгновенное значение тока, т. е. значение его в любой момент времени t, определится как производная q по t

Здесь q = q+ + q, где q+ и q — положительный и отрицательный заряды, переместившиеся в противоположные стороны за время t.

В Международной системе единиц ток i измеряется в амперах (А), заряд q — в кулонах (К) или ампер-секундах (А×с), время t — в секундах (с).

Электрический ток может быть постоянным (неизменяющимся) или переменным, т.е. изменяющимся в зависимости от времени.

Направление тока характеризуется знаком тока. Понятия положительный ток или отрицательный ток имеют смысл, только если сравнивать направление тока в проводнике с некоторым заранее выбранным ориентиром — так называемым положительным направлением.

Положительное направление тока выбирается произвольно; оно обычно указывается стрелкой. Если в результате расчета тока, выполненного с учетом выбранного положительного направления, ток имеет знак плюс (i > 0), то это означает, что его направление совпадает с выбранным положительным направлением. В противном случае, когда ток отрицателен (i

Двойное индексное обозначение возможно и для тока. Например, i12обозначает ток, который имеет положительное направление на участке цепи от точки 1 к точке 2. Однако на практике большее распространение нашло обозначение с помощью стрелок.

Положительными направлениями токов и напряжений пользуются при исследовании процессов, происходящих в электротехнических устройствах, и при расчете электрических цепей. Для краткости положительное направление будем называть просто направлением.

Источник

Положительные направления тока и напряжения

Электрический ток в общем случае представляет собой движения электрических зарядов отрицательного и положительного знаков в разные стороны.

Численно ток определяется как придел отношения количества электричества, переносимого заряженными частицами сквозь рассматриваемое поперечное сечение проводника за некоторый промежуток времени, к этому времени, при условии, что данный промежуток времени стремится к нулю:

где g — количество электричества, прошедшее через рассматриваемое сечение проводника за время t.

Количество электричества (заряд) измеряется в Кулонах [K], промежуток времени в секундах [сек], а единицей измерения тока служит Ампер [A].

Читайте также:  Ток через светодиод что это

Электрическому току приписывают направление.

За положительное направление тока принимают направление перемещения положительных зарядов от точки высшего потенциала к точке меньшего потенциала.

Направление тока характеризуется знаком тока. Понятия положительный или отрицательный ток имеют смысл, если сравнивать направление тока в проводнике с некоторым заранее выбранным направлением – так называемым положительным направлением тока.

Положительное направление тока выбирается произвольно и указывается стрелкой.

Рассмотрим пассивный участок электрической цепи с выбранным положительным направлением тока:

При протекании тока от точки 1 к точке 2 подразумевается, что потенциал точки 1 выше потенциала точки 2.

Под напряжением на данном участке подразумевается разность электрических потенциалов точек 1 и 2.

Единица измерения напряжения Вольт [B].

При условии, что j1 больше j2 U12 = j1 — j2 будет положительным.

Порядок индексов при напряжении означают его выбранное положительное направление.

Чаще всего положительное направление напряжения выбирают совпадающим с положительным направлением тока и указывают стрелкой.

4. Источник напряжения и источник тока.

В теории электрических цепей используют понятия идеальные источники электрической энергии: источник напряжения и источник тока.

Им приписывают следующие свойства:

Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Рис.2. Идеальный источник напряжения и

его вольтамперная характеристика(BAX).

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике напряжения от меньшего потенциала к большему возможно работа сторонних сил, которые присущи источнику.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

На рис.2(а) указано направление напряжения на зажимах идеального источника, которое всегда равно э.д.с. источника по величине и противоположно ей по направлению.

Идеальный источник напряжения называют еще источником бесконечноймощности. Это — теоретическое понятие. Величина тока в пассивной цепи зависит от параметров этой цепи и e(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток цепи должен быть теоретически равен бесконечности. В действительности при замыкании зажимов источника ток имеет конечное значение, так как реальный источник обладает внутренним сопротивлением.

Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи и в не которых случаях (по условию задачи) могут вообще не учитываться. Внутреннее сопротивление источника э.д.с.(r) на схемах замещения изображается последовательно соединенным с самим источником.

Рис.3. Источник напряжения конечной мощности.

Источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах.

Рис.4. Идеальный источник тока и его вольтамперная характеристика.

Предполагается, что внутренне сопротивление идеального источника тока равно бесконечности, и поэтому параметры внешней цепи, от которых зависит напряжение на зажимах источника тока, не влияют на ток источника.

При увеличении напряжения внешней цепи, присоединенной к источнику тока, напряжение на его зажимах, и следовательно, мощность возрастают. Поэтому идеальный источник тока теоретически так же рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображен на рис.5. g – внутренняя проводимость источника. Она характеризует внутренние параметры источника и ограничивает мощность, отдаваемую в цепь.

Рис.5. Источник тока конечной мощности.

Часто при решении задач методом эквивалентных преобразований возникает необходимость заменить реальный источник напряжения эквивалентным источником тока или наоборот. Преобразование осуществляется по схеме и формулам рис.6.

Рис.6. Преобразования источников конечной мощности.

5. Сопротивление.

Сопротивлением называется идеализированный элемент цепи в котором происходит необратимый процесс преобразования электрической энергии в тепловую.

Кроме того, данный термин применяется для количественной оценки величины, равной отношению напряжения на данном элементе к току, проходящему через него:

Формула 2 выражает закон Ома.

Сопротивление всегда положительно.

Величина обратная сопротивлению носит название проводимости:

Рис.7. Графическое изображение сопротивления

с выбранными положительными направлениями тока и напряжения.

Мгновенная мощность, поступающая в сопротивление равна:

Pr = Ui = i 2 r = U 2 q (4)

Параметр r в общем случае зависит от тока i (например, вследствие нагревания проводника током).

Вольтамперная характеристика (зависимость напряжения на сопротивлении от тока) носит нелинейный характер.

Рис.8. BAX сопротивления: а – нелинейная; б – линейная.

Если сопротивление не зависит от тока, то имеет место прямая пропорциональность, выражающая закон Ома. В этом случае сопротивление называется линейным.

6. Индуктивность.

Индуктивностью называется идеализированный элемент электрической цепи, приближающейся по свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

При этом термин «индуктивность» и его обозначение L применяется как для обозначения самого элемента цепи, так и для количественной оценки отношения потокосцепления самоиндукции к току в данном элементе:

Индуктивность всегда положительна, так как потокосцепления и ток имеют одинаковые знаки.

В общем случае индуктивность зависит от тока и является нелинейной.

Если зависимостьy(i) линейная, то индуктивность – величина постоянная.

Рис.9. Зависимость потокосцепления от тока:

а — нелинейная, б – линейная.

Рис.10. Графическое изображение индуктивности.

eL электродвижущая сила самоиндукции, которая по закону Ленца противодействует изменению потокосцепления, что учитывается знаком « — ».

Если индуктивность L величина постоянная (не зависит от тока), то

Напряжение на индуктивности определяется:

Ток на индуктивности:

Формулы (8) и (9) выражают закон Ома дифференциальной и интегральной форме для индуктивности.

Мгновенная мощность, поступающая в индуктивность равна:

Мощность индуктивности связана с процессом нарастания или убывания энергии магнитного поля.

7. Емкость.

Емкостью называется идеализированный элемент электрической цепи приближенно заменяющий конденсатор, в котором накапливается энергия электрического поля.

При этом данный термин применяется как для обозначения самого элемента, так и для количественной оценки отношения заряда к напряжению на этом элементе:

Емкость всегда положительна, так как заряд и напряжение имеют одинаковый знак.

В общем случае зависимость заряда от напряжения носит нелинейный характер и, следовательно, параметр С зависит от напряжения.

Если зависимость заряда от напряжения линейная, емкость C – величина постоянная.

Рис.11. Зависимость электрического заряда от напряжения,

а – нелинейная, б – линейная.

Ток емкости равен производной электрического заряда по времени:

Формула (12) выражает закон Ома для емкости.

Напряжение на емкости:

Условное графическое изображение емкости указано на рис.11. Там же даны положительные направления тока и напряжения.

Рис.12. Условное обозначение емкости.

Мгновенная мощность, поступающая в емкость, равна:

Мощность емкости связана с процессом накопления или убыли электрического заряда в емкости. Когда заряд положительный и возрастает ток положительный и в емкость поступает электрическая энергия из внешней цепи. Когда заряд положителен, но убывает, т.е. ток отрицателен, энергия, ранее накопленная в электрическом поле емкости, возвращается во внешнюю цепь.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник