Меню

Химический источник тока формулы

Химические источники тока: основные характеристики

Химические источники тока: основные характеристикиУже более двух столетий человечество использует энергию химических реакций между различными веществами для получения постоянного тока.

Принцип работы

Окислительно-восстановительная реакция, протекающая между веществами, обладающими свойствами окислителя и восстановителя, сопровождаются выделением электронов, движение которых образует электрический ток. Однако, чтобы использовать его энергию, необходимо создать условия для прохождения электронов через внешнюю цепь, в противном случае она при простом смешивании окислителя и восстановителя выделяется во внешнюю среду теплом.

Поэтому все химические источники тока имеют два электрода:

анод, на котором происходит окисление;

катод, осуществляющий восстановление вещества.

Электроды на расстоянии помещены в сосуд с электролитом — веществом, проводящим электрический ток за счет процессов диссоциации среды на ионы.

Принцип преобразования химической энергии в электрическую

Принцип преобразования химической энергии в электрическую

На рисунке показано, что электроды размещены в отдельных сосудах, соединенных солевым мостиком, через который создается движение ионов по внутренней цепи. Когда внешняя и внутренняя цепь разомкнуты, то на электродах протекают два процесса: переход ионов из металла электрода в электролит и переход ионов из электролита в кристаллическую решетку электродов.

Скорости протекания этих процессов одинаковы и на каждом электроде накапливаются потенциалы напряжения противоположных знаков. Если их соединить через солевой мостик и приложить нагрузку, то возникнет электрическая цепь. По внутреннему контуру электрический ток создается движением ионов между электродами через электролит и солевой мостик. По внешней цепи возникает движение электронов по направлению от анода на катод.

Практически все окислительно-восстановительные реакции сопровождаются выработкой электроэнергии. Но ее величина зависит от многих факторов, включающих объемы и массы используемых химических веществ, примененных материалов для изготовления электродов, типа электролита, концентрации ионов, конструкции.

Наибольшее применение в современных химических источниках тока нашли:

для материала анода (восстановителя) — цинк (Zn), свинец (Pb), кадмий (Cd) и некоторые другие металлы;

для материала катода (окислителя) — оксид свинца PbO2, оксид марганца MnO2, гидроксооксид никеля NiOOH и другие;

электролиты на основе растворов кислот, щелочей или соли.

Способы классификации

Одна часть химических источников тока может повторно использоваться, а другая нет. Этот принцип взят за основу их классификации.

Классификация химических элементов

Классификация химических элементов

Электродвижущая сила гальванических элементов, в зависимости от конструкции, достигает 1,2÷1,5 вольта. Для получения больших значений их объединяют в батареи, соединяя последовательно. При параллельном подключении батарей увеличивается ток и мощность.

Принято считать, что первичные химические источники тока не поддерживают повторную зарядку, хотя более точно это положение можно сформулировать по-другому: ее проведение экономически не целесообразно.

Резервные первичные химические источники тока хранятся в состоянии, когда электролит изолирован от электродов. Это исключает протекание окислительно-восстановительной реакции и обеспечивает готовность к вводу в работу. Они не используются повторно. Срок хранения резервных химических источников тока ограничен в 10÷15 лет.

Аккумуляторы успешно перезаряжаются приложением внешней электрической энергии. Благодаря этой возможности их называют вторичными источниками тока. Они способны выдерживать сотни и тысячи циклов заряда-разряда. ЭДС аккумулятора может быть в пределах 1,0÷1,5 вольта. Их тоже объединяют в батареи.

Электрохимические генераторы работают по принципу гальванических элементов, но у них для проведения электрохимической реакции вещества поступают извне, а все выделяющиеся продукты удаляются из электролита. Это позволяет организовать непрерывный процесс.

Основные рабочие характеристики химических источников тока

1. Величина напряжения на разомкнутых клеммах

В зависимости от конструкции единичный источник может создавать только определенную разность потенциалов. Для использования в электрических устройствах их объединяют в батареи.

2. Удельная емкость

За определенное время (в часах) один химический источник тока может выработать ограниченное количество тока (в амперах), которые относят к единице веса либо объема.

3. Удельная мощность

Характеризует способность единицы веса или объема химического источника тока вырабатывать мощность, образованную произведением напряжения на силу тока.

4. Продолжительность эксплуатации

Еще этот параметр называют сроком годности.

5. Значение токов саморазряда

Эти побочные процессы электрохимических реакций приводят к расходу активной массы элементов, вызывают коррозию, снижают удельную емкость.

6. Цена на изделие

Зависит от конструкции, применяемых материалов и ряда других факторов.

Лучшими химическими источниками тока считаются те, у которых высокие значения первых четырех параметров, а саморазряд и стоимость низкие.

Принципы заряда аккумуляторов

Среди вторичных химических источников тока большую популярность набирают литий ионные модели, которые стали массово применяться для питания электронных устройств. У них материалом положительного электрода используется LiMO2 (M Co, Ni, Mn), а отрицательного — графит.

При заряде ионы лития от приложенной внешней энергии выделяются из металла катода, проходят через электролит и проникают в пространство между слоями графита, накапливаясь там.

Принципы заряда аккумуляторов

Когда энергия зарядного устройства отсутствует, а к электродам подключена нагрузка, то ионы лития в электролите двигаются в противоположную сторону.

Если заряд и разряд не проводятся, то энергия в аккумуляторе не расходуется, а сохраняется. Но ее количество ограничивается свойствами применяемых материалов. К примеру, у литий-ионных аккумуляторов значение удельной электроемкости составляет 130÷150 мАч/г. Оно лимитировано свойствами материала анода. Для графита емкость выше примерно в два раза.

Ученые сейчас ищут способы повышения емкости аккумулятора, изучают возможности использования химической реакции, проходящей между литием и кислородом воздуха. Для этого разрабатываются конструкции с воздушным, не расходуемым катодом, используемые в отдельных аккумуляторах. Этот метод может до 10 раз увеличить плотность энергии.

Эксплуатация химических источников тока требует знания основ электротехники, электрохимии, материаловедения и физики твердых тел.

Источник

Химические источники тока

date image2015-10-22
views image17618

facebook icon vkontakte icon twitter icon odnoklasniki icon

Химические источники тока (ХИТ) – электрохимические устройства, в результате работы которых химическая энергия окислительно-восстановительных процессов превращается в электрическую энергию постоянного тока. К ним относятся гальванические элементы, аккумуляторы, топливные элементы.

Основными характеристиками ХИТ являются ЭДС, напряжение, мощность, энергия, которую они отдают во внешнюю цепь, саморазряд.

Химические источники тока должны иметь: как можно большее значение ЭДС; максимально высокие удельные мощность и емкость; по возможности меньшую разность между напряжением источника тока и его ЭДС; максимально низкий саморазряд (потеря емкости ХИТ при разомкнутой цепи).

Гальванические элементы – устройства, в которых энергия химической окислительно-восстановительной реакции превращается в электрическую. Он состоят из двух электродов, имеющих различный электродный потенциал, электролита, который дает возможность перемещаться ионам от одного электрода к другому, и металлического проводника для перемещения электронов, направленный поток которых приводит к возникновению электрического тока.

Рассмотрим механизм возникновения электрического тока на примере медно-цинкового гальванического элемента (элемента Даниэля – Якоби). Он состоит из двух электродов – цинкового и медного, погруженных в соответствующие растворы сульфатов цинка и меди, которые разделены полупроницаемой перегородкой 1 (внутренняя цепь) (рис. 8.3.). Электроды соединены друг с другом металлическим проводником (внешняя цепь) через гальванометр 2.

Если цепь замкнута, то происходят процессы гидратации ионов металлов на обоих электродах и устанавливается химическое равновесие между металлом и его ионами в растворе:

Металлы приобретают разный по величине заряд, так как Zn и Cu имеют различную активность, которая может быть оценена с помощью стандартных электродных потенциалов ( =−0,76 В, =+0,34 В).

Рис. 8.3. Схема гальванического элемента Даниэля-Якоби

Таким образом, концентрация свободных электронов на этих электродах различна. При замыкании внешней цепи происходит выравнивание этих концентраций и электроны по внешнему проводнику перемещаются от Zn электрода к Cu электроду. Концентрация электронов на цинковом электроде уменьшается, что приводит к смещению равновесия на границе Zn/ZnSO4 в сторону образования катионов Zn 2+ ,т.е. происходит процесс растворения цинка (Zn Zn 2+ + 2 ).

Процесс окисления в электрохимии называется анодным процессом, а сам электрод – анодом.

Концентрация свободных электронов на медном электроде увеличивается в результате поступивших электронов с цинка и равновесие на границе Cu/CuSO4 смещается в сторону образования металлической меди (Cu Cu 2+ + 2 ), т.е. происходит процесс восстановление меди.

Процесс восстановления в электрохимии называется катодным процессом, а сам электрод – катодом.

На Zn аноде происходит процесс окисления, в результате которого цинк переходит в раствор в виде катионов, на Cu катоде – процесс восстановления ионов меди:

Cu 2+ + Zn « Zn 2+ + Cu.

Таким образом, при работе гальванического элемента одновременно происходят процессы окисления и восстановления.

Схематически работа гальванического элемента записывается следующим образом:

(−) Zn /Zn 2+ ç H2SO4 ç Cu 2+ /Cu (+).

В гальваническом элементе происходит движение ионов (SO4 2- ) во внутренней цепи и электронов (2 ) во внешней, т.е. возникает электрический ток.

В скобках указываются знаки электродов, причем анод записывается слева, катод справа. Стрелки указывают направление движения электронов во внешней цепи и ионов SO4 2- во внутренней.

Важной характеристикой гальванического элемента является его движущая сила (ЭДС), которая представляет собой разность потенциалов электродов при отсутствии тока во внешней цепи:

Потенциалы каждого электрода зависят от концентрации потенциалопределяющих ионов и вычисляются по уравнению Нернста (8.4).

Если условия стандартные ([ZnSO4] и [CuSO4 ] = 1 моль/л, температура Т = 298 К), то для медноцинкового элемента стандартная ЭДС о равна:

ЭДС о = +0,34 – (–0,76) = 1,1 В.

Среди большого разнообразия гальванических элементов можно выделить три основных типа:

1. Два различных металла находятся в растворах своих солей.

К этому типу относится рассмотренный гальванический элемент Даниэля–Якоби.

2. Два различных металла находятся в одном электролите.

Примером такого элемента может служить элемент Вольта, состоящий из двух пластин (Zn и Cu), находящихся в растворе серной кислоты.

Читайте также:  Воздушный зазор в двигателе постоянного тока

При его работе происходят следующие процессы:

(+) К: 2Н + + 2 « Н2 (на Cu).

Выделяющийся водород насыщает поверхность катода (меди), в результате чего получается электрод другого состава (не медный, а водородный). Схема гальванического элемента Вольта:

(−) Zn/Zn 2+ çH2SO4ç2H + /H2 (Cu) (+).

3. Два одинаковых электрода находятся в растворах своих солей с различной концентрацией ионов металла в электролите. Такой элемент называется концентрационным.

Схема медного концентрационного гальванического элемента:

(−) Cu/CuSO4 ççCuSO4/Cu (+).

Роль анода выполняет электрод, находящийся в более разбавленном растворе, так как его электродный потенциал имеет более низкое значение по сравнению со вторым электродом. ЭДС такого гальванического элемента зависит только от соотношения концентраций потенциалопределяющих ионов (в данном случае от концентрации CuSO4).

Как источники электрической энергии концентрационные гальванические элементы практического значения не имеют.

Электродвижущая сила и напряжение гальванического элемента. ЭДС – разность потенциалов между катодом и анодом в условиях обратимой работы ГЭ. Измерение ЭДС обычно проводят компенсационным методом при отсутствии тока в цепи.

Прямым измерением разности потенциалов на клеммах элемента с помощью обычного вольтметра можно получить значение напряжения U, которое не равно ЭДС элемента.

Напряжение – разность между электродами работающего гальванического элемента (в необратимых условиях работы). Напряжение элемента U 2+ |H2SO4|Pb 2+ /PbO2 (+).

При взаимодействии оксида свинца с H2SO4 образуется PbSO4

При первичном и последующих зарядах аккумулятора, когда он работает как электрохимическая ячейка, PbSO4 на катоде превращается в свинец Pb, а на аноде – в диоксид свинца PbO2, которые и являются электродами.

При работе аккумулятора – его разряде, когда он работает как химический источник тока, на электродах протекают электродные процессы в обратном направлении.

Электродные реакции в свинцовом аккумуляторе можно представить в виде:

По мере его разряда расходуются материалы катода (PbО2) , анода (Pb) и электролит – серная кислота. Напряжение на зажимах аккумулятора падает, и его необходимо заряжать. Свинцовый аккумулятор не должен разряжаться до полного расходования активности веществ. Если это произойдет, то станет невозможной его перезарядка (аккумулятор можно разряжать до 1,8 В). Для заряда аккумулятор подключают к внешнему источнику тока, направление тока противоположно разрядному.

Во время заряда аккумулятора растет напряжение на его полюсах. В конце оно достигает такого значения, что начинается электролиз воды, сопровождающийся выделением водорода на катоде и кислорода – на аноде:

Так называемое «кипение» электролита является признаком окончания заряда свинцового аккумулятора.

Стандартные величины потенциалов для электродов свинцового аккумулятора имеют следующие значения: Е о = −0,356 В, Е о = +1,685 В.

ЭДС аккумулятора как химического источника тока рассчитывается по уравнению:

ЭДС аккумулятора зависит от концентрации (активности) серной кислоты, которая возрастает при заряде аккумулятора и уменьшается при его разряде. О степени разряда аккумулятора судят по концентрации электролита, т.е. концентрации H2SO4. На практике с помощью ареометра обычно измеряется не концентрация кислоты, а ее плотность.

При плотности =1,19 г/см 3 аккумулятор разряжен на 50%, при =1,11 г/см 3 аккумулятор разряжен полностью. Используя концентрированные растворы H2SO4, можно было бы увеличить ЭДС аккумулятора, однако при концентрации H2SO4 больше 39% резко уменьшается электропроводность растворов и увеличивается растворимость свинца, поэтому оптимальными являются 32-39 % − ные растворы H2SO4.

ЭДС заряженного аккумулятора приблизительно равна 2 В. Если последовательно соединить 6 элементов, то получится обычный автомобильный аккумулятор с ЭДС=12 В.

Заряженный аккумулятор может быть сразу использован по назначению. При хранении же из него выливают электролит и промывают водой. В таком виде он может находиться до 2−х лет, и для его использования достаточно лишь залить электролит. При хранении незаряженного аккумулятора с раствором серной кислоты происходит его «сульфатирование» – образование на пластинках большого количества PbSO4.

Когда кислотный аккумулятор работает, давая ток, PbSO4 осаждается в очень мелкозернистой форме на поверхности электродов. Когда же аккумулятор выключен, мелкозернистый слой рекристаллизуется и образуются более крупные кристаллы, которые могут закупорить поры электрода, уменьшая его поверхность, или отрываться от электрода и основной причиной выхода аккумулятора из строя, поэтому нужно следить, чтобы аккумулятор не простаивал частично в разряженном состоянии.

Преимущества свинцового аккумулятора – высокий КПД (около 80 %), высокая ЭДС и относительно малое ее изменение при разряде, большая электрическая емкость, устойчивость в работе.

Недостатки – большая масса и, следовательно, малая удельная емкость, саморазряд аккумулятора при хранении, малый срок службы (2-5 лет), а также токсичность свинца и сильные окислительные свойства H2SO4. Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов свинца для решеток, препятствующих образованию и выпадению шлама, кристаллизации сульфата свинца, облегченных и прочных материалов корпусов и улучшения качества сепараторов.

Щелочные аккумуляторы различаются по материалу пластин отрицательно заряженного электрода. Наиболее распространенные из них кадмий никелевые (Cd − Ni) и железо никелевые (Fe – Ni) аккумуляторы. Активная масса положительных пластин состоит в основном из гидратированного оксида никеля (III). Кроме того, в ней содержится графит, добавляемый для увеличения электропроводности. Электролитом служит раствор КОН (20 %), содержащий небольшое количество LiOH. ЭДС заряженного аккумулятора (Cd − Ni) приблизительно равна 1,3 В.

Окислительно-восстановительные процессы, протекающие при работе щелочного аккумулятора (Сd – Ni), могут быть представлены следующими уравнениями:

(−) A: Cd + 2OH — Cd (OH)2 + 2 ; (+) K: 2NiO(OH) + 2H2O + 2 2Ni(OH)2 + 2OH – ; 2NiO(OH) + 2H2O + Cd Cd(OH)2 + 2Ni(OH)2.

Cхемы щелочных аккумуляторов:

(−) Cd/ KOH, LiOH /NiO(OH), C (+);

(−) Fe/ KOH, LiOH /NiO(OH), C (+).

В отличие от свинцового аккумулятора срок службы щелочных аккумуляторов порядка 10 лет. Они хорошо выдерживают перегрузку и длительное время пребывания в разряженном состоянии. Однако меньшая ЭДС и более высокая стоимость не позволяют во многих случаях заменить ими свинцовые аккумуляторы. Щелочные аккумуляторы выпускаются промышленностью различной удельной емкости (0,5–120 А ч). В последние годы проводятся исследования по совершенствованию существующих и созданию новых аккумуляторов, что обусловлено необходимостью создания экологически чистых автомобилей.

Топливные элементы (ТЭ) – перспективные химические источники тока (электрохимические генераторы), способные непрерывно работать за счет постоянного подвода к электродам новых порций реагентов и отвода продуктов реакции.

Топливными элементами называются устройства, в которых химическая энергия окисления топлива превращается в электрическую энергию.

ТЭ относятся к первичным химическим источникам тока с непрерывной подачей реагентов (окислителя и восстановителя) и непрерывным удалением продуктов сгорания.

Сгорание топлива (окисление) практически во всех ТЭ происходит на поверхности инертных электродов (Сграфит, Pt, Ag, Ni и др.), содержащих катализаторы.

В качестве топлива (восстановителя) используют жидкие или газообразные водород, гидразин, гидриды металлов, оксид углерода, различные углеводороды, метиловый спирт и др. спирты. Твердое топливо – уголь, кокс, торф обладает малой реакционной способностью и может быть окислено при температуре выше 1000 о С. Электролитами являются водные растворы кислот или щелочей, расплавленные карбонаты или гидриды металлов. Как правило, природные виды топлива подвергаются предварительной обработке для получения электрохимически активных веществ.

На практике наиболее часто применяется водородно-кислородный топливный элемент со щелочным электролитом (30−40 % раствор KOH). Устройство элемента чрезвычайно простое. В герметически закрытом сосуде установлено два пористых, металлических (чаще всего никелевых) электрода, разделенных слоем раствора гидроксида калия (натрия). В ТЭ подаются газообразный водород и кислород.

Схема водородно-кислородного ТЭ имеет следующий вид:

где Ме – проводник первого рода, играющий роль катализатора электродного процесса и токоотвода (например, специально обработанные Ni, Co, металлы группы Pt).

Элемент работает при 50-70 о С, при атмосферном давлении. На электродах протекают следующие реакции:

на аноде – окисление водорода

на катоде – восстановление кислорода

(+) К: ½O2 + H2O + 2 2OH — .

Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов OH — от катода к аноду.

Уравнение токообразующей реакции имеет вид:

Таким образом, в водородно-кислородном ТЭ протекает процесс сгорания водорода с образованием воды. В результате протекания этой реакции в цепи генерируется постоянный ток и химическая энергия превращается в электрическую энергию постоянного тока.

Источник



Лекция 13. Химические источники тока.

Общее определение и понятие химического источника электрохимической энергии. Необратимые и обратимые гальванические элементы. Медно-цинковый гальванический элемент. Источники тока с электродами из различных металлов, концентрационные цепи, гальванические элементы с газовыми электродами. Аккумуляторы кислотные, щелочные, сухие аккумуляторные батареи. Топливные элементы.

Зависимость электродного потенциала от природы веществ учитывается величиной φ 0 . В связи с этим все электродные процессы принято располагать в ряд по величине их стандартных электродных потенциалов. Они для многих веществ измерены экспериментально и даны в справочниках.

Если расположить химические элементы в порядке относительной величины их стандартных электродных потенциалов, то получится ряд напряжений металлов или электрохимический ряд напряжений.

Общее определение и понятие химического источника электрохимической энергии. Гальванические элементы и химические источники тока (ХИТ). Необратимые и обратимые гальванические элементы.

Устройства, в которых осуществляется непосредственно преобразование энергии химической реакции в электрохимическую энергию называют химическими источниками электрической энергии или химическими источниками тока (ХИТ), или гальваническими элементами (ГЭ). Обычно гальваническими элементами называют такие ХИТ, в которых протекают практически необратимые реакции. Их нельзя перезаряжать, и они однократного действия.

ХИТ, в которых протекают обратимые (или почти обратимые) реакции, называют аккумуляторами.

Гальванический элемент – устройство, в котором создается электродвижущая сила (э.д.с.) в результате протекания химической реакции на его электродах, погруженных в раствор электролита. Гальванический элемент состоит из двух полуэлементов. В одном осуществляется окислительная полуреакция в другом восстановительная. Таким образом, действие гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. Однако устройство гальванического элемента таково, что окислительно-восстановительная реакция пространственно разделена. Окисление протекает на одном электроде, обычно металлическом, а восстановление на другом. При таких конструктивных условиях электроны передаются от восстановителя к окислителю по внешней цепи. Этот направленный поток электронов – есть электрический ток. При протекании окисления на одном электроде и восстановления на другом будет постоянно генерироваться электроны во внешнюю цепь, если ее замкнуть.

Читайте также:  Назначение преобразователей переменного тока в переменный ток

Медно-цинковый гальванический элемент или гальванический элемент Даниэля – Якоби.

Классическим примером гальванического элемента является элемент Даниэля – Якоби или медно-цинковый гальванический элемент (рис. 2). Один из его полуэлементов состоит из цинкового электрода, погруженного в раствор сульфата цинка. Другой элемент состоит из медного электрода, опущенного в раствор сульфата меди. Оба раствора соприкасаются, но не перемешиваются друг с другом, за счет пористой мембраны между разными электролитами.

В левом полуэлемене происходит окисление цинка

Так как на аноде всегда окисление, то цинковый электрод является анодом.

В правом полуэлементе происходит восстановление ионов меди

Важно, что обе полуреакции протекают в месте соприкосновения цинка с раствором.

Электроны непосредственно переходят от атомов цинка к ионам меди. Но так как в данной окислительно-восстановительной реакции, окислительная полуреакция пространственно отдалена от восстановительной, то электроны будут переходить от восстановителя к окислителю не через раствор, а по внешней цепи, по проводнику, например, металлическому.

Поэтому на катоде будет происходить восстановление ионов меди в соответствии с реакцией

а на аноде окисление атомов цинка

Рис. 2. Медно-цинковый гальванический элемент или элемент Даниэля-Якоби.

Таким образом, при работе гальванического элемента электроны от восстановителя переходят к окислителю по внешней цепи, на электродах идут электрохимические процессы, в растворе наблюдается направленное движение ионов. Цинковый электрод является анодом, заряженным отрицательно, медный электрод является катодом, заряженным положительно. В любом гальваническом элементе на аноде происходит процесс окисления, на катоде – процесс восстановления.

Солевой мостик и типы полуэлементов.

Гальванические элементы, используемые в лабораториях, состоят из двух полуэлеменов, разделенных солевым мостиком. Солевой мостик представляет собой перевернутую U-образную трубку, в которой находится солевой раствор (рис.2). Обычно в качестве такого раствора берут водные растворы NH4NO3, KNO3, KCl. Трубка с концов закрыта ватой. В элементе Даниэля-Якоби роль солевого мостика выполняет пористый стакан.

В электрохимических системах имеют место разные схемы подключения электродов.

Знаки электродов противоположны в ХИТ знаком анода и катода в электролитической ячейке (рис. 3).

Электролитическая ячейка Электрохимическая ячейка,

(э.д.с. прикладывается к ячейке) химический источник тока

(э.д.с. вырабатывается источником)

Электролитическая ячейка (э.д.с. прикладывается к ячейке) Электрохимическая ячейка – химического источника тока (э.д.с. вырабатывается источником)
Анод Катод Анод Катод
Знак + – + –
Направление потока е — во внешней цепи из внешней цепи во внешней цепи из внешней цепи
Полуреакция окисление восстановление окисление восстановление

Рис. 3. Схемы подключения электродов.

Обычно используют особые записи химического источника тока и гальванического элемента. Для гальванического элемента, показанного на рис. 1 можно записать

При такой записи используются следующие обозначения. Одна вертикальная черта │ означает поверхность раздела фаз металл-раствор. Две вертикальных черты ║ обозначают мембрану, пористую перегородку, пористый стакан или солевой мостик. Принято указывать в левой части анод (отрицательный электрод), то есть электрод, на котором происходит окисление, в правой части катод (положительный электрод) – электрод на котором происходит восстановление.

Типы полуэлементов.

Полуэлементы называют окислительно-восстановительными электродами, иногда окислительно-восстановительными парами. Наиболее распространенными являются следующие три полуэлемента: металл- ион металла, неметалл – ион, ион – ион.

Примером полуэлементов типа металл – ион металла являются электроды цинк – ион цинка и медь – ион меди (II). Примером полуэлемента неметалл – ион является водородный электрод. В таком полуэлементе между адсорбированным на твердой поверхности слоем молекул водорода и ионами гидроксония в растворе устанавливается равновесие:

Схема водородного электрода

Полуэлемент типа ион – ион состоит из инертного электрода (например платины), погруженного в раствор, который содержит ионы одного и того же металла в двух разных состояниях окисления. Примером такого типа полуэлементов является система Fe 3+ — Fe 2+ .

В этом полуэлементе устанавливается равновесие

Схема полуэлемента запишется в виде:

ЭДС гальванических элементов.

Электрический ток, протекающий во внешней цепи гальванического элемента, может производить полученную работу. Работа электрического тока выражается произведением количества, прошедшего по цепи электричества на напряжение

W – полученная работа; U – напряжение между полюсами гальванического элемента; F=96485 Кл/моль ≈ 96500 Кл/моль – количество электричества, прошедшее по цепи при окислении одной молярной масс эквивалентов ионов Ме1 и одновременном восстановлении одной молярной массы эквивалентов ионов Ме2.

Эта работа зависит от силы тока, также как и напряжение. В случае обратимого протекания реакции (ОВР), то есть при бесконечно маленькой скорости, напряжение будет максимальным, и работа тоже (рассеяние тепла от тока будет маленьким).

Максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой гальванического элемента и обозначается E.

В общем случае при растворении (или выделении) 1 моль вещества, ионы которого имеют заряд n, максимальная полученная работа:

Известно, что при Т=const, P=const

где ∆G – изменение энергии Гиббса.

Поэтому можно записать

Если соблюдаются стандартные условия, то ЭДС гальванического элемента называется его стандартным ЭДС, которое обозначается через Е 0 . Для него справедливо

Учитывая, что стандартное изменение энергии Гиббса реакции связано с константой равновесия КС выражением вида

то имеем полезную для практических работ формулу

Данная формула позволяет измерением E 0 (ЭДС) определить стандартную энергию Гиббса G 0 и константу равновесия окислительно-восстановительных реакций.

Принято ЭДС гальванического элемента представлять как разность двух электродных потенциалов φ, каждый из которых отвечает полуреакции, протекающей на одном из электродом

где φк – потенциал катода, φа – потенциал анода.

Так как для электродных потенциалов имеет место уравнение Нернста

то в силу (13), уравнение Нернста для ЭДС имеет следующий вид

Сухие гальванические элементы.

Сухие гальванические элементы применяют в качестве источников питания для бытовой и радиоаппаратуры, переносных электрических фонарей. Все они имеют один и тот же принцип работы и различаются лишь химической природой электродов. Анодным электродом могут быть активные металлы Zn, Mg, Li, катодами – оксиды марганца, серебра, меди, хлориды свинца.

Среди сухих гальванических элементов самым распространенным является марганцево-цинковый элемент. Его условная запись имеет вид

В данном элементе анодом является цинковый электрод, катод изготовлен из смеси диоксида марганца с графитом. Смешивание диоксида марганца с графитом дает увеличение электрической проводимости. Электролитом является паста, состоящая из раствора хлорида аммония и загустителя — смеси муки с крахмалом.

На аноде и катоде рассматриваемого гальванического элемента, протекают следующие электродные реакции

(-) А: Zn → Zn 2+ + 2e — (16)

(+) K: 2MnO2 + 2H2O + 2e — → MnO(OH) + 2OH (17).

При анодном окислении цинка образуется пленка труднорастворимого гидроксида

Zn 2+ + 2OH — → Zn(OH)2 (18),

которая препятствует дальнейшему протеканию процесса на аноде. Поэтому для растворения гидроксида цинка применяют хлорид аммония, и в этом случае анодный процесс протекает по уравнению

Суммарное уравнение токообразующей реакции имеет вид

Если заменить цинк магнием, имеющим меньшее значение стандартного электродного потенциала, то можно повысить напряжение сухого гальванического элемента. Также можно увеличить напряжение гальванического элемента, если использовать щелочной электролит, например, раствор KOH.

На основе сухих гальванических элементов выпускают батареи напряжением от 3 до 100 В, емкостью от 0,5 до 30 А∙час.

Недостатками сухих гальванических элементов является однократность использования и саморазрядка, понижающая напряжение и емкость.

Электрохимические аккумуляторы.

Аккумуляторами называют устройства, в которых происходит поэтапное преобразование электрической энергии в химическую, а также химической в электрическую. Они представляют собой агрегаты многоразового действия, сочетая в себе гальванический элемент и электролизер.

Процесс накопления химической энергии под действием вешнего постоянного тока называют зарядкой аккумулятора, а процесс превращения в электрическую энергию – зарядкой. При зарядке аккумулятор работает как электролизер, а при разрядке как гальванический элемент.

Рассмотрим свинцовые аккумуляторы, которые получили наибольшее распространение. Из свинца с примесью сурьмы отливают пластины ячеистой структуры. Их собирают в батареи и помещают в корпус из полипропилена. Предварительно в ячейки запрессовывают смесь оксида свинца (II) с глицерином, которая затвердевает в виде глицерата свинца. Свинцовые аккумуляторы называют также кислотными, так как электролитом в них является раствор серной кислоты. Оксид свинца (II) PbO при взаимодействии с H2SO4 превращается в сульфат свинца PbSO4, который при зарядке восстанавливается до свинца Pb на катоде и окисляется до оксида свинца (IV) PbO2 на аноде.

При разрядке аккумулятор работает как гальванический элемент. На его электродах протекают процессы

(-) А: Pb → Pb 2+ + 2e — (21)

Образующиеся катионы Pb 2+ в среднекислотной среде связываются в малорастворимый сульфат свинца PbSO4, который оседает на поверхности электродов. С учетом этого электродные реакции имеют вид

Суммарная токообразующая реакция описывается уравнением

Для расчета ЭДС аккумулятора используют выражение, которое получается из уравнения Нернста

Читайте также:  Конденсаторы с большими разрядными токами

Е = 2,041 + lg<[a 2 (SO4 2- ) ∙ a 4 (H + )]/ a 2 (H2O)> (26),

где a(SO4 2- ) – активность (концентрация) ионов SO4 2- , а(Н + ) – активность ионов водорода;

a(H2O) активность молекул воды.

Из уравнения (26) видно, что с ростом активности (концентрации) H2SO4, увеличивается ЭДС, но при концентрации кислоты более 40 %, резко уменьшается электропроводность раствора и увеличивается растворимость свинца. Оптимальными являются 32 – 39 %-ные растворы H2SO4.

Достоинством свинцовых аккумуляторов является высокий кпд, достигающий 80 %, высокая ЭДС, устойчивость в работе. К недостаткам следует отнести малый срок службы (2 – 5 лет), токсичность свинца, выделение водорода при зарядке.

Кроме кислотных используются щелочные аккумуляторы, такие как никель-кадмиевые и никель-железные. Они более долговечны, срок службы достигает 10 лет. В этих аккумуляторах в качестве электролита используют раствор гидроксида калия KOH. Уравнение электродных процессов при разряде никель-кадмиевого аккумулятора имеют вид

Суммарный токобразующий процесс имеет вид

Топливные элементы.

Топливные элементы – это устройства непрерывного действия, в которых энергия сгорания топлива непосредственно превращается в электрическую энергию. Они относятся к первичным источникам тока. Окисление топлива происходит на поверхности электродов, материалом которого является графит, либо платина, серебро, никель. В качестве топлива (восстановителя) используется водород, гидразин, уголь, оксид углерода, различные углеводороды. Окислителем в топливных элементах обычно является кислород или воздух.

Для примера рассмотрим водородно-кислородный топливный элемент с щелочным электролитом. Электролитом является 30-40 %-ный раствор КОН.

Принцип работы такого топливного элемента основан на реакции окисления водорода

При этом химическая энергия окисления водорода превращается в электрическую. Катод и анод изготовлены из угля и металла платиновой группы. Данный металл является катализатором и имеет пористую структуру. К катоду подводится кислород или воздух, который восстанавливается до гидроксид-ионов. К аноду подается водород, окисляющийся до воды. Уравнения электродных процессов имеют вид

Суммарная токобразующая реакция имеет вид

Обычное значение ЭДС топливных элементов составляет 1,0 – 1,5 В.

Источник

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Батарея Вольта

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Принцип действия химического источника питания

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный источник тока

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

Батарейка

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Источник