Меню

Когда ток в нейтрали равен нулю

Напряжение смещения нейтрали в трехфазных цепях

Как уже писалось (например, здесь) нейтралью называют общую точку обмоток электрических машин при соединении в схему звезда, при соединении в схему треугольник для получения нейтральной точки можно использовать схему “скользящий треугольник”.

Синонимом понятия “смещение нейтрали” является выражение “перекос фаз”. Оба эти словосочетания используются в лексиконе и профессиональной среде электриков.

В данной статье будем рассматривать смещение нейтрали у нагрузки. Для начала выведем формулу для расчета напряжения смещения нейтрали, для этого нарисуем схему замещения трехфазной сети, где в обычном режиме напряжения фаз представляют собой синусоиды, которые при равномерной нагрузке фаз сдвинуты на 1200 и в любой момент времени их сумма равна 0. В нашем же случае, нагрузка будет неравномерная, что приведет к смещению нейтрали, что можно увидеть по рисунку с векторными диаграммами.

Напряжение смещения нейтрали определяется по следующей формуле:

формула для определения величины смещения нейтрали

  • Еа, Ев, Ес — ЭДС источника питания
  • Уа, Ув, Ус — проводимости фаз потребителя, напомним, что проводимость — величина обратная полному сопротивлению, то есть У=1/Z
  • 00’ — эти точки соответствуют нулю нагрузки и нулю генератора (трансформатора), питающего данную нагрузку

Под смещением нейтрали понимают, что между нулевым проводом источника и нагрузки возникает напряжение, а по нулевому проводу течет ток. Но, это в случае, если нулевые провода соединены. Если же нулевой провод источника и нагрузки не соединен, то смещение нейтрали может вызвать нарушение магнитного равновесия в трансформаторе.

Случай 1 — нагрузка однородная равномерная по трем фазам

векторная диаграмма при равномерной однородной нагрузке и отсутствии смещения нейтрали

Идеальный случай (симметричная нагрузка), при котором смещения нейтрали не происходит, сумма напряжений в любой момент времени равна нулю, линейные трех фаз составляют

220В. Под однородностью нагрузки понимается, что она носит либо активный, либо индуктивный, либо емкостной характер по всем трем фазам, как сказали бы электроники — элемент “или”. В нашем примере верным будет утверждение, что Xa=Xb=Xc.

Случай 2 — нагрузка однородная и неравномерная по трем фазам

векторная диаграмма при однородной и неравномерной нагрузке, наблюдается смещение нейтрали

При данном стечении обстоятельств, происходит смещение нейтрали, которому соответствует отрезок 00’ на рисунке сверху слева, который и создает ток в нулевом проводе. Смещения в ту или иную сторону точки 0’ от точки 0 будет зависеть от характера нагрузки. В данном примере нагрузка однородная, но неравномерная, различающаяся по величине, но не по типу.

Случай 3 — нагрузка по трем фазам разнородная

векторная диаграмма при разнородной нагрузке по трем фазам и наличием смещения нейтрали нагрузки

В случае с разнородной неравномерной нагрузкой нейтральная точка нагрузки (0’) вышла за пределы треугольника. Значения же фазных напряжений на нагрузке превышают это значение на источнике питания в несколько раз. Однако, не следует забывать, что это смещение происходит только на нагрузке, а не на источнике питания.

Неоднородность нагрузки будет влиять на источник питания (трансформатор или генератор), только, если относительно источника эта нагрузка будет велика. В этом случае может произойти нарушение магнитной устойчивости трансформатора.

Следует помнить, чем выше нагрузка, тем большее влияние на систему она может оказывать, аналогично, как большие двигатели серьезнее просаживают напряжение на шинах при перерывах питания на электростанциях.

Сохраните в закладки или поделитесь с друзьями

Источник

Когда ток в нейтрали равен нулю

Трехфазные цепи или в чем отличие фазы от ноля?

Автор: Atomik
Опубликовано 04.10.2006

Понятия ФАЗА и НОЛЬ вытекают из темы ТРЕХФАЗНЫЕ (в дальнейшем — ) ЦЕПИ, потому рассмотрим их подробно.

Что это такое вообще? А вот что:
Если соединить несколько однофазных цепей (состоят из генератора, нагрузки и двух проводов линии: прямого и обратного), токи в которых имеют одну частоту, но сдвинуты относительно друг друга по фазе, то можно получить такое условие, когда сумма токов в обратных проводах будет равна нулю. Тогда можем объединить все обратные провода в один и отказаться от них, тем самым сэкономив на материале провода (можно купить еще вискаса!(К черту вискас — осетрину давай! Здесь и далее прим. Кота.)). Эта возможность и дала основание для распространения многофазных цепей, в частности при производстве и передаче электроэнергии применяются почти исключительно 3Ф цепи. Кстати, все основные звенья 3Ф цепей (3Ф генератор, 3Ф трансформатор и 3Ф двигатель) были разработаны русским инженером Доливо-Добровольским еще в 1880-е годы! Причина распространения 3Ф систем также в том, что 3Ф генератор, 3Ф трансформатор и 3Ф двигатель наиболее просты по конструкции, экономичны и надежны в работе по сравнению с другими.

3Ф система электрических цепей — совокупность трех однофазных цепей, в которых действует ЭДС одной и той же частоты, но сдвинуты на угол 120° одна от другой. Отдельную цепь из этих трех называют ФАЗА.
ФАЗА, это участок, по оторому течет один и тот же ток.
3Ф система ЭДС является симметричной, если эти ЭДС сдвинуты относительно друг друга на 120° и имеют равные амплитуды. 3Ф генераторы на электростанциях создают именно симметричную систему ЭДС.

3Ф нагрузка является симметричной, если комплексные сопротивления всех трех ее ФАЗ равны. Если к симметричной нагрузке приложена симметричная система ЭДС, будет иметь место 3Ф симметричная система токов.

Одни выводы фазных обмоток генератора условно называют начала и обозначают на схемах ABC, а другие — концы и обозначают XYZ.

Порядок, в котором ЭДС фаз генератора проходят через одинаковые значения называется чередования фаз.

Читайте также:  Шаблон для презентации электрический ток

Сумма ЭДС симметричной системы в любой момент времени равна 0.

Способов соединения ФАЗ в 3Ф цепях два: треугольником и звездой.
Соединение звезда, это соединение, при котором концы XYZ фазных обмоток генератора соединяют в общий узел, называемый НЕЙТРАЛЬНАЯ или НУЛЕВАЯ точка генератора (N или O). Соединение звездой показано на рисунке №1.
Соединение ФАЗ генератора в звезду:

Соединение ФАЗ генератора в треугольник, это такое соединение, при котором начало одной ФАЗЫ было соединено с концом следующей.

При отсутствии нагрузки, (т.е. при разомкнутых выводах генератора) в обмотках генератора, соединенных в треугольник, ток не течет т.к. сумма симметричных ЭДС дает «0».
Исходя из этого возможно только четыре соединения генератора с приемником:
1. треугольник — треугольник
2. треугольник — звезда
3. звезда — треугольник
4. звезда — звезда

Но, это было бы правдой, если бы не нейтральная (нулевая) точка, возникающая при соединении звездой. Ведь средние точки можно тоже соединить. Получаем еще один способ:
5. звезда — звезда, с нейтралью. (Y+Yn) Он-то нам и нужен! Вот это соединение:

Тут я много чего понаписал, объясняю:

Комплексное (с точкой) Ua, Ub, Uc — фазные напряжения.
Комплексное Uab, Ubc, Uca — линейные напряжения.
Комплексный Ia, Ib, Ic — Линейные токи (показывают от генератора к приемнику).
Комплексное In — показывают от приемника к генератору, по сути нейтраль (тот самый НОЛЬ в розетке) является обратным проводом.

А теперь самое интересное (в свое время меня поразило)
По второму закону Кирхгофа:

Uab = Ua — Ub
Ubc = Ub — Uc
Uca = Uc — Ua
Из этого следует, что:
Uab + Ubc + Uca = 0 ! (в симметричном режиме)
По первому закону Кирхгофа:
Ia + Ib + Ic = In
В симметричном режиме In = 0
Следовательно в симметричном режиме нейтраль не нужна!

Если внимательно рассмотреть векторную диаграмму, представленную на рисунке, то станет ясен вопрос, который тревожит очень многих: почему именно 220В, а не 200 или 250 и т.д. Или в общем виде: «почему шкала стандартных напряжений приемников выглядит, как 127, 220, 380, 660». А вот почему.
Посмотрим снова на рисунок №4, что мы видим? Рассмотрим вектор напряжения Uab.
Uab = Ua*cos30° + Ub*cos30° = 2 Uф*cos30° = sqrt3*Uф
Uл = sqrt3*Uф
, это разность потенциалов между проводом линии и нейтралью.
, это Напряжение между двумя линейными проводами (межфазное).

Теперь возьмем, к примеру, 220 вольт как Uф, вычисляя Uл получим 381,05 Вольт Возьмем эти за Uф 381,05 и снова вычислим, получим 659,99 вольт. И так далее. Вот откуда эти мистические цифры — из углов сдвига ФАЗ и математики!
Итак, при симметричной нагрузке нейтраль не нужна, так, как тока в ней все равно не будет. Тогда 3Ф система буде трехпроводной, что дает экономию на материале 50% по сравнению с однофазной (при одной и той же передаваемой мощности). На практике 3Ф нагрузка встречается (3Ф двигатель), однако даже в такой 3Ф цепи все равно возможен несиметричный режим, который, к примеру может быть вызван обрывом одной из фаз, или там несимметричный КЗ (между двумя фазами).
При несимметричной нагрузке и отсутствии нейтрали потенциал нейтральной точки нагрузки не будет равен нулю. Его можно определить по методу двух узлов находя смещение нейтрали:

Из схемы без нейтрали (рисунок №-1) видно, что в соответствии со вторым законом Кирхгофа фазные напряжения не будут равны ЭДС истояника на величину смещения нейтрали.

ВД для несимметричного режима без нейтрали:

При отсутствии нейтрали нарушается симметрия фазных напряжений. При любом изменении в одной из фаз точка n будет двигаться по плоскости перетаскивая за собой вектора фазных напряжений. Короче — дело дрянь. По этому поводу мне как-то сказали: хочешь увидеть фейерверк — перережь нейтральный провод в доме напротив 🙂 В результате при изменении нагрузки только одной из фаз изменяются все три фазных непряжения. Работа фаз не будет назависимой, это недопустимо, так как потребители, вкдюченные в разные фазы рассчитаны на работу при определенном Uф.

Для устранения такой зависимости одной фазы от другой, т.е. для обеспечения симметрии фазных напряжений при несимметричной нагрузке и предназначен нейтральный провод.

Несмотря на отсутствие разности потенциалов на нейтрали по ней будет протекать ток, вызванный несимметрией нагрузки. Короче «лишний ток» стекает по нейтрали.
Почему нейтраль называют землей? Потому, что на электростанции нулевая точка генератора заземлена, т.е. буквально провод закопан в землю. Это сделано для страховки.
Ну, а если кого-то заинтересует вопрос: «Как же это все работает на практике?», то вот упрощенная схема питания наших с вами квартир от электростанции.

От 3Ф генератора энергия идет к 3Ф трансформатору (тот, что у нас на подстанции) а от него уже поступает к нам в розетки на стене (на схеме потребители обозначены символом резисторов и подписаны, как 3Ф нагрузка)

И в завершение, пройдемся по главному из данной темы. Итак, выводы:
а) ФАЗА и НОЛЬ совершенно разные вещи! (Теперь мы знаем, что НОЛЬ, в общем может быть и не нужен, соединим все обратные провода из розеток по три штуки в одну точку и все, главное, чтоб нагрузка симметричная была, но вот ФАЗА нужна обязательно. Значит различия все-таки есть 🙂
б) ФАЗА фактически есть участок, по которому течет один и тот же ток. В розетке, же, на стене, это провод по которому ток к нам идет от генератора. (в отличие от НОЛЯ по которому тот стекает обратно к генератору, в его нулевую точку) Можно также сказать, что это один из трех переменных токов, вырабатываемых 3Ф генератором.
в) НОЛЬ (он же нейтраль) фактически есть провод, соединяющий нулевую точку генератора и нулевую точку нагрузки.
г) НОЛЬ буквально заземлен, но на электростанции.
д) Преимущество схемы YN в том, что она дает возможность подключения на 2 напряжения: между двумя линейными проводами и между фазой и нейтралью. ТАД (3Ф асинхронный двигатель U1 = 380/220)
е) При соединении фаз нагрузки в треугольник, каждая фаза находится под линейным напряжением, а при соединении в звезду под напряжением в раз меньше.
ж) При любой схеме соединения, в случае симметричного режима расчет 3Ф цепи сводится к расчету одной из фаз.
з) На практике указывают линейные напряжения и токи, поскольку не всегда есть доступ для приборов к нейтральной точке приемника.

Читайте также:  Напряжение тока в чем измеряется буква

Это все основные моменты о 3Ф цепях. Есть, что добавить? Пишите.

Источник



Перекос фаз, расфазовка или – смещение нейтрали

Перекос фаз

Для тех, кто еще не знает, открою истину, а другим напомню, что ток передается от электростанции к потребителю по трем фазам через повышающие трансформаторы напряжения и нулевой провод в этом случае не используется. А вот после того, как напряжение понижается и приходит к потребителю мы к этим трем фазам получаем и такое счастье, как нулевой провод. Когда внезапно пропадает контакт между нулем понижающего трансформатора (со станции, подстанции, ВРУ и т.д. и т.п.) и нулевым проводом в электрическом стояке возникает такое явление, которое называется смещением нейтрали. Напряжения в фазах сдвинуты друг относительно друга на угол 120°. Очень часто не сильно грамотные электрики называют это перекосом фаз, но на самом деле перекос фаз означает изменение угла между фазами вследствие несимметричности нагрузки, что сделать крайне нереально. Даже несимметричная нагрузка может привести лишь к тому, что вы не сможете использовать вашу электросеть с полной нагрузкой. Предположим, есть три фазы с максимальным значением 16 ампер. Вы всю свою нагрузку подключили к одной фазе, вместо возможных 10,5 кВт вы получите только 3,5 кВт. Но абсолютно ничего страшного в этом нет.

Теперь о «расфазовке». Этот термин используют совсем неграмотные электрики. У фаз существует порядок АВС. Этот порядок важен только на этапе монтажа и проектирования. Важность его заключается в том, что трехфазные двигатели вращаются вправо или влево, как раз, вследствие изменения чередования фаз. Так что под сленгом «расфазовка» (такого термина вообще не существует) правильнее будет использовать термин — порядок чередования фаз.

Смещение нейтрали

треугольник напряжений

Ну вот, с терминами разобрались, осталось узнать, что такое смещение нейтрали, каковы признаки и как оно возникает.

Так выглядит треугольник-звезда напряжений в исправной электросети. Между вершинами треугольника, то есть между фазами напряжение 380 вольт и это напряжение называется линейным. А вот между любой фазой и нулем, привычное нам, напряжение 220 вольт и оно называется фазным.

Снова немного окунемся в теорию. В трехфазной сети есть такая особенность, что по нулевому проводу ток максимальный в том случае, если загружена ТОЛЬКО одна фаза. При симметричной нагрузке всех трех фаз ток в нулевом проводе равен нулю.

три фазы

Итак, в подъезд подается три фазы, дальше фазы в определенном порядке подаются в разные квартиры с целью хотя бы приблизительно обеспечить симметрию нагрузки, а вот ноль идет абсолютно во все квартиры. Схематично и упрощенно это можно представить в виде трех розеток.

три фазы обрыв нуля

А теперь представьте себе, что автомат защиты выбран неправильно, нагрузка несимметрична и по нулевому проводу начинает протекать очень большой ток, который вызывает нагрев провода. В конце концов, ноль отгорает. Или ноль после ремонтных работ электрик по своей халатности забывает присоединить на место.

три фазы обрыв нуля нагрузка одна фаза

Дальше, в любую розетку мы включим лампочку, но две других трогать не будем.

диаграмма нагрузка одна фаза

И ничего не произойдет. В том плане, что лампочка не загорится. Она попросту будет кусочком провода, который соединит фазу «А» с бывшим нулевым проводом и бывший нулевой провод просто станет продолжением фазы «А», но только подключенным через лампочку. Теперь посмотрим, что будет на диаграмме:

три фазы обрыв нуля нагрузка две фазы

А видим мы следующее, что теперь между бывшим нулевым проводом и двумя другими фазами («С» и «В») будет напряжение 380 вольт. Включаем еще одну точно такую же лампочку в другую розетку.

Теперь между бывшим нулевым проводом и каждой из фаз «А» или «В» напряжение будет около 190-200 вольт, а фазой «С» около 360 вольт.

Ну и в завершении, если мы включим еще одну такую же лампочку в третью розетку, мы снова получим диаграмму, как на самом верхнем рисунке.

Делаем выводы. Чем больше нагрузка в фазе при обрыве нулевого провода, тем сильнее падает напряжение в этой фазе, но возрастает в других. Угадать, что будет через секунду в такой сети просто нереально. Очень хорошо видно, что нулевая точка смещается относительно фазных проводников и относительно нулевой точки, как таковой, и именно поэтому такое явление называется – смещением нейтрали. Говорить о перекосе фаз в этом случае тоже не получается, фазы остаются на месте, напряжение между ними неизменно, угол сдвига фаз равен 120° — изменяется потенциал (напряжение) нулевого провода относительно фаз и относительно нулевой точки понижающего трансформатора. «Расфазировки» тоже не происходит – порядок фаз не меняется. Но что в этом случае страшно, это короткое замыкание одной из фаз. Если при включении-выключении приборов ноль просто гуляет, нагрузка более или менее равномерна, то при коротком замыкании (якобы коротком, потому что ноль оборван) на одной фазе, на двух соседних напряжение сразу поднимется минимум до 360 вольт, а максимум до 400. При целом нулевом проводе и надежном контакте смещение нейтрали тоже происходит, но в пределах 1-3%. При большой несимметричности нагрузки всё, что может произойти это просадка напряжения в одной из фаз, просто потому, что проводник фазы не справляется с нагрузкой и происходит очень небольшое смещение нейтрали, но напряжение в соседних фазах при этом если и повысится, то на 1-5 вольт, не больше. Так что, если в вашем доме начали перегорать лампочки, бытовые приборы и другое электрооборудование по вечерам или утрам, или наоборот, вы не можете пользоваться бытовыми приборами из-за нехватки напряжения, запросто может оказаться, что оборвался нулевой провод на электрическом стояке. Запомните одну простую вещь, на смещение нейтрали указывает понижение напряжения на одной (двух фазах), но при этом на соседних двух (одной – соответственно) фазах напряжение ЗНАЧИТЕЛЬНО ПОВЫШАЕТСЯ. Выражаясь техническим языком: нейтральный провод обеспечивает СИММЕТРИЮ фазных напряжений при НЕСИММЕТРИЧНОЙ нагрузке. Именно для этого делается перемычка на вводе между заземляющей и нулевой шинкой, чтобы снизить смещение нейтрали (Заземление нулевого провода). И именно поэтому рекомендуется выключать электроприборы из розеток, когда вы ими не пользуетесь, потому что никогда не угадаешь, когда произойдет обрыв нулевого провода. Чтобы защитить себя от последствий смещения нейтрали можно установить реле контроля напряжения, подробнее об этом можно почитать в этой статье.

Читайте также:  При включении катушки индуктивности в цепь переменного тока колебания тока

Источник

Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе

Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе

В трехфазной системе, при симметричной линейной нагрузке (например трехфазный электродвигатель) ток в нулевом проводе отсутствует. В реальности идеальной симметрии не существует, ток в нулевом проводе будет присутствовать, но он будет меньше фазных (если совсем отключить нагрузку с двух фаз он станет равен току оставшейся фазы).
Поскольку ток в нулевом проводе был меньше тока в фазном проводнике (раньше было мало нелинейных нагрузок), то для экономии нулевой проводник делался тоньше фазных, теперь сечение нулевого проводника совпадает с сечением фазного.

Если основное потребление энергии приходится на нелинейные нагрузки (импульсные блоки питания без ККМ, люминесцентные лампы с электронными балластами без ККМ и т.п. — ток потребляется узкими импульсами вблизи пика питающего напряжения) встречаются рекомендации по увеличению сечения нулевого проводника в два раза (относительно сечения, рассчитанного для фазных проводников). Это обусловлено тем, что в нулевом проводе будет протекать еще и значительная сумма гармоник тока кратных трем (особенно будет сильна третья — 150 Гц) .

Поскольку от перегрузки по току защищаются только фазные повода, перегрузка нулевого (нейтрального) провода может привести к его повреждению, «отгоранию нуля» — что может привести к значительному перекосу фазных напряжений и повреждению потребителей.
Получается, что мощные потребители с несинусоидальным входным током (нелинейные нагрузки) могут не только вызывать искажение формы напряжения сети и «загрязнять» сеть помехами, но и привести к аварийной ситуации, выведя из строя кабель и других потребителей.

Примеры нелинейных нагрузок, способных вызвать рост тока в нулевом проводнике (если в них нет корректора коэффициента мощности):
Газоразрядные лампы
Светодиодные лампы
Дуговые и индукционные печи
Трансформаторы работающие в режиме насыщения
Компьютеры, мониторы, оргтехника
Телевизоры
Инверторные кондиционеры
Источники бесперебойного питания
Микроволновые печи
Импульсные блоки питания, инверторы, преобразователи частоты
Электродвигатели с регуляторами скорости вращения (инверторами)

Форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды (совсем на нее не похожа). Математически форму несинусоидального тока можно представить в виде суммы, уменьшающихся по амплитуде, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….).

ГОСТ 30804.4.30-2013 предписывает учитывать гармоники не менее 40-го порядка. Но только гармоники, кратные третьей (остальные взаимно компенсируются складываясь), суммируются в нейтральном проводнике и вызывают весьма значительный ток, к которому еще добавляется ток обусловленный несимметрией питающего напряжения, его несинусоидальностью и несимметрией нагрузки. Основной вклад вносит третья гармоника (в нейтрале течет ток с частотой 150 Гц) — прочие гармоники малы.

ГОСТ Р 50571.5.52-2011:
предлагает узнать ток и в нулевом проводнике и выбрать сечение всех проводников по наиболее нагруженному проводу;
следует указать, что ситуация ухудшается, если в трехфазной системе нагружены только две фазы. В этом случае ток высших гармоник в нейтральном проводнике будет суммироваться током дисбаланса;
если доля третьей гармоники превышает 33%, необходимо увеличить площадь поперечного сечения нейтрального проводника.

Источник