Меню

Контактной линии постоянного тока

Как устроена и работает контактная сеть?

Опубликовано 26.07.2019 · Обновлено 04.02.2021

Как устроена и работает контактная сеть?

контактная сеть на железной дороге

Электрификация пришла на наши железные дороги давно. Современные Российские железные дороги уже невозможно представить без электровозов, быстрых пассажирских, тяжелых и длинных грузовых поездов, которые водят эти локомотивы. Безусловно электрификация совершила подлинную революцию на железных дорогах всего мира. Оставим пока анализ всех технических и экономических плюсов электротяги, посмотрим на контактную сеть.

железная дорога контактная сеть

Контактная сеть представляет из себя целый набор устройств: опоры, контактный провод, консоли, поддерживающие устройства, несущий трос, струны. Много всякого, а как оно работает?

Вдоль железной дороги, как правило, с правой стороны, на определенном расстоянии друг от друга (порядка 50 метров), в специальный фундамент в насыпи устанавливаются опоры, они могут быть бетонными или металлическими. На опоры устанавливаются консоли с изоляторами, между консолью и опорой, на консоль подвешивается сверху несущий трос, под ним подвешен непосредственно сам контактный провод.

контактная сеть

Подвеска контактного провода к несущему тросу осуществляется, так называемыми, струнами, один конец струны закрепляется на несущем тросу, а к нижнему концу струны специальными хомутами крепится и закрепляется винтами контактный провод. Сам контактный провод не идеально круглый, а имеет специальное сечение, оно позволяет хомутам надежно закрепить его, не мешая токоприемникам электровозов свободно двигаться по нижней его части.

Контактный провод

Контактный провод

На станциях все практически также, только контактная сеть располагается на жестких поперечинах или на гибких поперечинах, а поперечины устанавливаются сверху опор, которые находятся на больших расстояниях друг от друга, и между ними проложено много путей, это позволяет не устанавливать опоры контактной сети на каждом пути станции.

станция ржд

С целью обеспечения возможности снятия напряжения на отдельных путях перегонов и станций при сохранении питания электроэнергией других путей, что может оказаться необходимым не только при возникновении аварийных ситуаций, но и для обеспечения плановых работ на контактной сети, выполняемых со снятием напряжения, контактная сеть делится на отдельные участки (секции), электрически непосредственно не связанные между собой, не только на перегонах, но и на станциях. Это называется – секционированием.

Тяговая подстанция

Тяговая подстанция

Контактная сеть питается от тяговых подстанций, расположенных на определенном расстоянии на участках, в зависимости от рода тока. Железные дороги электрифицированы на постоянном токе, напряжением 3000 Вольт и на переменном токе, напряжением 25000 Вольт.

На границах между линиями, электрифицированными по системам постоянного и переменного тока, устраивают станции стыкования. Контактная сеть на таких станциях делится на три района: в одном районе контактная сеть всегда находится под напряжением постоянного тока, а в другом – всегда под напряжением переменного тока, а в третьем районе, называется, район переключения, напряжение на каждом пути может быть тем или другим в зависимости от того, какого рода тока электровоз направляется на этот путь или находится на нем.

В настоящее время при электрификации предпочтение отдается переменному току, при этой системе благодаря высокому напряжению тяговые подстанции можно располагать на большем расстоянии одна от другой (через 40-60, а иногда и 80 километров), чем при постоянном токе (через 15-25 километров), общую площадь сечения проводов контактной сети можно существенно уменьшить (обычно 140 мм2, при постоянном токе она составляет 700 мм2 и даже протягивается второй провод).

Неоспоримыми положительными качествами системы переменного тока являются высокие тяговые свойства электровозов и отсутствие интенсивной коррозии подземных искусственных сооружений. Можно существенно увеличивать вес составов, а отсюда возрастает пропускная способность железных дорог, да и материальные затраты при электрификации переменным током ниже. Вообщем экономика двигает вперед научно-технический прогресс. Но есть у контактной сети переменного тока и существенный недостаток – она оказывает сильное индуктивное влияние на другие линии, находящиеся в зоне действия ее электромагнитного поля – воздушные и кабельные линии связи, линии телеуправления, радиовещания, силовые и осветительные линии, линии для питания автоблокировки и др. Приходится удалять их на большое расстояние или калибровать.

Контролирует и в оперативном порядке управляет устройствами контактной сети на дороге – энергодиспетчер.

Источник

Системы тока. Напряжение в контактной сети

На железных дорогах России используют две системы электроснабжения: постоянного и однофазного переменного тока. Тяга на трехфазном переменном токе не получила распространения, поскольку технически сложно изолировать близко расположенные провода двух фаз контактной сети (третья фаза — рельсы).

Электрический подвижной состав обеспечивают тяговыми двигателями постоянного тока, так как предлагаемые модели двигателей переменного тока не отвечают предъявляемым требованиям по мощности и надежности. Поэтому железнодорожные линии снабжают системой однофазного переменного тока, а на локомотивах устанавливают специальное оборудование, преобразующее переменный ток в постоянный.

Правилами технической эксплуатации регламентированы номинальные уровни напряжения на токоприемниках электрического подвижного состава: 3 кВ — при постоянном токе и 25 кВ — при переменном. При этом определены допустимые с точки зрения обеспечения стабильности движения колебания напряжения: при постоянном токе — 2,7. 4 кВ, при переменном — 21 . 29 кВ. На отдельных участках железных дорог допускается уровень напряжения не менее 2,4 кВ при постоянном токе и 19 кВ — при переменном.

Основными параметрами, характеризующими систему электроснабжения электрифицированных железных дорог, являются мощность тяговых подстанций, расстояние между ними и площадь сечения контактной подвески.

На железных дорогах, электрифицированных на постоянном токе, тяговые подстанции выполняют две функции: понижают напряжение подводимого трехфазного тока и преобразуют его в постоянный. Все оборудование, подающее переменный ток, размещается на открытых площадках, а выпрямители и вспомогательные агрега ты — в закрытых помещениях. От тяговых подстанций электроэнергия поступает в контактную сеть по питающей линии — фидеру.

Основными недостатками системы электроснабжения постоянного тока являются его полярность, относительно низкое напряжение и отсутствие возможности обеспечить полную электроизоляцию верхнего строения пути от нижнего. Рельсы, служащие проводниками тока разной полярности, и земляное полотно представляют собой систему, в которой возможна электрохимическая реакция, приводящая к коррозии металла. В результате снижается срок службы рельсов и искусственных сооружений. Для предотвращения этого применяют соответствующие защитные устройства (анодные заземлители, катодные станции и др.).

Из-за относительно низкого напряжения (11 = 3 кВ) в системе постоянного тока по контактной сети к электрическому подвижному составу подводится мощность (Ж= Ш) при большой силе тягового тока /. Для этого тяговые подстанции размещают недалеко друг от друга (10. 20 км) и увеличивают площадь сечения проводов контактной подвески.

При переменном токе повышается эффективность использования электрической тяги, поскольку по контактной сети передается требуемая мощность при меньшей силе тока по сравнению с системой постоянного тока. Тяговые подстанции в этом случае располагаются на расстоянии 40. 60 км друг от друга. Их задачей является только понижение напряжения со 110. 220 до 25 кВ, поэтому их техническое оснащение проще и дешевле, чем у тяговых подстанций постоянного тока. Кроме того, в системе однофазного переменного тока площадь сечения проводов контактной сети примерно в два раза меньше. Для размещения оборудования на тяговых подстанциях при переменном токе используют открытые площадки. Однако конструкция локомотивов и электропоездов при переменном токе сложнее, а их стоимость выше.

В результате воздействия электромагнитного поля переменного тока на металлические конструкции и коммуникации, расположенные вдоль железнодорожных путей, в них появляется опасное для людей напряжение, а в линиях связи и автоматики возникают помехи. Поэтому применяют особые меры защиты сооружений. Затраты на такие защитные меры, как улучшение электрической изоляции между рельсами и землей, замена воздушных линий кабельными или радиорелейными, составляют 20. 25 % общей стоимости работ по электрификации.

Читайте также:  Направление тока лимфы в теле человека

Стыкование контактных сетей линий, электрифицированных на постоянном и переменном токе, осуществляют на специальных железнодорожных станциях. В ряде случаев, когда создание таких станций представляется нецелесообразным, применяют электровозы двойного питания, работающие как на постоянном, так и на переменном токе.

Общий курс железных дорог

  • Введение
  • Значение железнодорожного транспорта и основные показатели его работы
  • Место железных дорог в транспортной системе страны
  • Дороги дореволюционной России
  • Железнодорожный транспорт послереволюционной России и Советского Союза
  • Железнодорожный транспорт Российской Федерации
  • Основные положения структурной реформы железнодорожного транспорта
  • Понятие о комплексе устройств и сооружений и структуре управления на железнодорожном транспорте
  • Габариты на железных дорогах
  • Основные руководящие документы по обеспечению работы железных дорог и безопасности движения
  • Основные сведения о категориях железнодорожных линий, трассе, плане и продольном профиле
  • Значение пути в работе железных дорог, его основные элементы и требования к ним
  • Земляное полотно и его поперечные профили. Водоотводные устройства
  • Искусственные сооружения, их виды и назначение
  • Назначение, составные элементы и типы верхнего строения пути
  • Балластный слой
  • Шпалы
  • Рельсы
  • Рельсовые скрепления. Противоугоны
  • Бесстыковой путь
  • Устройство рельсовой колеи
  • Особенности устройства пути в кривых участках
  • Стрелочные переводы
  • Съезды, глухие пересечения и стрелочные улицы
  • Классификация и организация путевых работ
  • Защита пути от снега, песчаных заносов и паводков
  • Схема электроснабжения. Комплекс устройств
  • Системы тока. Напряжение в контактной сети
  • Тяговая сеть
  • Сравнение различных видов тяги
  • Классификация тягового подвижного состава
  • Электрический подвижной состав
  • Автономный тяговый подвижной состав
  • Локомотивное хозяйство
  • Обслуживание локомотивов и организация их работы
  • Экипировка, техническое обслуживание и ремонт локомотивов
  • Восстановительные и пожарные поезда
  • Классификация и основные типы вагонов
  • Технико-экономические показатели вагонов
  • Основные элементы вагонов
  • Виды ремонта вагонов. Сооружения и устройства вагонного хозяйства
  • Текущее содержание вагонов
  • Понятие о комплексе устройств автоматики, телемеханики и сигнализации
  • Классификация сигналов
  • Автоматическая блокировка
  • Автоматическая локомотивная сигнализация
  • Устройства диспетчерского контроля за движением поездов
  • Автоматическая переездная сигнализация
  • Полуавтоматическая блокировка
  • Электрическая централизация стрелок и светофоров
  • Диспетчерская централизация
  • Комплекс устройств горочной автоматики
  • Проводная связь
  • Радиосвязь
  • Телевидение
  • Линии сигнализации и связи. Понятие о волоконно-оптической связи
  • Назначение и классификация раздельных пунктов
  • Продольный профиль и план путей на станциях
  • Маневровая работа на станциях
  • Технологический процесс работы станции и техническо-распорядительный акт
  • Разъезды, обгонные пункты и промежуточные станции
  • Участковые станции
  • Сортировочные станции
  • Пассажирские станции
  • Грузовые станции
  • Межгосударственные приграничные передаточные станции
  • Железнодорожные узлы
  • Планирование грузовых перевозок
  • Организация вагонопотоков
  • Классификация поездов и их обслуживание
  • Организация грузовой и коммерческой работы. Комплексная механизация погрузочно-разгрузочных работ
  • Основы организации пассажирских перевозок
  • Значение графика и требования, предъявляемые к нему
  • Классификация графиков
  • Элементы графика
  • Порядок разработки графика и его показатели
  • Понятие о пропускной и провозной способности железных дорог
  • Система управления движением поездов
  • Основные показатели эксплуатационной работы
  • Автоматизация процессов управления перевозками
  • Приложение

Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Источник



Линии электропередачи постоянного тока

Линии электропередачи постоянного токаПреимущества линий электропередач постоянного тока состоят в следующем:

1. Предел передаваемой мощности по линии не зависит от ее длины и значительно больше, чем у линий электропередач переменного тока;

2. Снимается понятие предела по статической устойчивости, характерные для воздушных линий электропередачи переменного тока;

3. Энергосистемы, связанные воздушные линии электропередачи постоянного тока могут работать несинхронно или с различными частотами;

4. Требуется лишь два провода вместо трех или даже один, если использовать в качестве второго землю.

На рис. 1. приведена схема передачи постоянного тока, осуществленная по биполярной схеме («два полюса — земля»).

На этом рисунке UD и UZ, преобразовательные (выпрямительная и инвекторная) подстанции; L — реактор или фильтр для уменьшения влияния высоких гармоник, пульсации напряжения и аварийных токов; rл -сопротивление линии; G, Т — генераторы и трансформаторы.

Выработка и потребление электроэнергии осуществляется на переменном токе.

Схема передачи постоянного тока в послеаварийном режиме

Рис.1. Схема передачи постоянного тока в послеаварийном режиме

Основные элементы линии постоянного тока:

1. Управляемые высоковольтные выпрямители из которых собирается схема преобразовательной подстанции.

2. Управляемые высоковольтные инверторы, из них также собирается схема преобразовательной подстанции.

Схема инверторной подстанции принципиально не отличается от схемы выпрямительной подстанции, так как выпрямители обратимы. Единственное отличие состоит в том, что на инверторной подстанции приходится устанавливать компенсирующие устройства, конденсаторы, либо синхронные компенсаторы для выдачи инверторам реактивной мощности, которая составляет около 50. 60% передаваемой активной мощности.

Средние точки обоих преобразовательных подстанций в биполярной передаче заземлены, а полюсы изолированы.

Напряжение полюса UП равно напряжению между полюсом и землей. Например, на передаче энергии Волгоград — Донбасс напряжение полюса относительно земли +400 кВ, а второго — 400 кВ. Напряжение Ud между полюсами 800 кВ. Передача может быть разделена на две независимые полуцепи. В нормальном режиме при равных точках в полуцепях ток через землю близок к нулю. Обе полуцепи передачи могут работать автономно и в случае аварии одного полюса половина мощности может передаваться по другому полюсу с возвратом через землю.

При аварии одного полюса или одной полуцепи вторая полуцепь может работать по униполярной схеме.

Схема передачи постоянного тока в послеаварийном режиме

Рис. 2. Схема передачи постоянного тока в послеаварийном режиме

В униполярной передаче заземлен один из полюсов и имеется один провод, изолированный от земли. Второй провод либо заземлен с двух сторон передачи, либо отсутствует. Такой заземленный второй провод применяется в тех случаях, когда недопустимо применение тока в земле (например, при вводах в крупные города). Как правило, одна цепь униполярной передачи может состоять из одного провода и земли, а биполярная — из двух проводов. Описан опыт длительного пропускания постоянного тока через землю до 1200 А.

Униполярные схемы применяются для передачи небольших мощностей до 100. 200МВт на небольшие расстояния. Большие мощности на большие расстояния целесообразно передавать по биполярным схемам.

Преобразовательные подстанции из-за сложного и дорогостоящего оборудования очень увеличивают стоимость передач постоянного тока. В тоже время сама линия постоянного тока стоит дешевле, чем линия переменного тока, из-за меньшего количества проводов, изоляторов, линейной арматуры и более легких опор.

Пропускная способность мощности линии постоянного тока определяется значением и разностью напряжений по концам линии, ограничивается активными сопротивлениями линиями и концевых устройств, а также мощностью преобразовательных подстанций.

Однако пропускная способность мощности линии постоянного тока значительно больше, чем у линии переменного тока.

Полная мощность биполярной передачи линии Волгоград — Донбасс напряжением Ud = 800 кВ составляет 720 МВт. Введена в эксплуатацию крупнейшая в мире линия Экибастуз — Центр с UП = ±750 кВ, напряжением между полюсами Ud = 1500 кВ и длиной 2500 км. Пропускная способность мощности может быть доведена до 6000 МВт.

Читайте также:  В чем отличие действия магнитного тока

Основная область применения линий постоянного тока — передача больших мощностей на дальние расстояния. Однако особые свойства этих линий позволяют с успехом использовать их и в других случаях. Например, линии постоянного тока оказываются эффективными при необходимости пересечения морских проливов, а также связи несинхронных систем или систем, работающих с разной частотой (так называемые вставки постоянного тока).

Наряду с линиями постоянного тока высокого и сверхвысокого напряжения в военном деле применяются и линии постоянного тока малого и среднего напряжения.

Широкое распространение получили следующие напряжения: малые напряжения — 6, 12, 24, 36,48, 60 вольт, средние напряжения — 110, 220, 400 вольт.

Для всех напряжений линии постоянного тока имеют следующие достоинства:

1. Они не требуют расчета устойчивости.

2. Напряжение в таких линиях более равномерно, так как в установившемся режиме они не генерируют реактивной мощности.

3. Конструкции линий постоянного тока проще, чем переменного: меньше число гирлянд изоляторов, меньшая затрата металла.

4. Направление потока мощности можно изменять (реверсивные линии).

1. Необходимость сооружения сложных концевых подстанций с большим числом преобразователей напряжения и вспомогательной аппаратуры. Известно, что выпрямители и инверторы сильно искажают форму кривой напряжения на стороне переменного тока. Поэтому приходится ставить мощные сглаживающие устройства, что значительно снижает надежность.

2. Отбор мощности от линии постоянного тока пока затруднителен.

3. В линиях постоянного тока требуется, чтобы перед включением были примерно одинаковыми полярность и напряжения по обоим концам.

Таким образом, возможно сделать вывод, что из-за больших затрат к0 (рис.3) строительство линий электропередач постоянного тока (кривая 2) становится экономически целесообразным только при больших расстояниях равных примерно 1000. 1200 км (точка m).

Зависимость капитальных затрат к от длины линии l для переменного тока - 1 и для постоянного тока - 2

Рис. 3. Зависимость капитальных затрат к от длины линии l для переменного тока — 1 и для постоянного тока — 2

Источник

Воздушные и кабельные линии постоянного тока. Основное оборудование преобразовательных подстанций

Воздушная линия постоянного тока отличается от линии переменного тока главным образом конструкцией опор. Возможные конструкции опор для различных типов линий постоянного тока приведены на рис. 11.10. Для этих опор требуется меньший расход стали, и они проще по конструкции по сравнению с опорами линии переменного тока сопоставимого класса напряжения и пропускной способности. На рис. 11.11 показана металлическая свободностоящая опора воздушной линии ±400 кВ.

На рис. 11.12 приведены конструкции промежуточных опор линии 1150 кВ переменного тока и линии ±750 кВ постоянного тока, начерченные в одном масштабе. Эти линии имеют примерно одинаковую пропускную способность (5000 и 6000 МВт соответственно). Масса опоры переменного тока 19,8 т, опоры постоянного тока — 9,4 т. Примерно такие же соотношения существуют и для других сопоставимых линий переменного и постоянного тока. При этом для линии постоянного тока ширина полосы отчуждения на 25—30 % меньше, чем для линии переменного тока. Отсюда меньшая стоимость линии постоянного тока при прочих равных исходных данных.

Условия работы линейной изоляции на постоянном напряжении существенно отличаются от условий ее работы на переменном напряжении. В линиях переменного тока распределение напряжения по гирлянде изоляторов определяется главным образом собственными емкостями каждого изолятора и его емкостями между изолятором и проводом, и изолятором и землей. В результате этого загрязнение поверхности изоляторов относительно мало сказывается на распределении напряжения по ним. В линиях постоянного тока емкости изоляторов не участвуют в распределении напряжения по гирлянде. Это распределение определяется сопротивлениями поверхностных утечек изоляторов, которые связаны с загрязнением их поверхностей. При чистых сухих изоляторах распределение напряжения по ним равномерное, но при загрязнении или увлажнении отдельных изоляторов эта равномерность нарушается, что может привести к выходу изоляторов из работы. Решение этой проблемы состоит в применении изоляторов с увеличенной длиной пути утечки или увеличении их количества в поддерживающих гирляндах. К сожалению, при этом увеличивается стоимость линий.

Конструкция полюса линии постоянного тока идентична конструкции фазы линии переменного тока. Здесь также применяются расщепленные провода по двум причинам. Первая заключается в больших токах полюса, что предопределяет и большое суммарное сечение проводов полюса (несколько тысяч квадратных миллиметров). Проводов таких сечений заводы не выпускают, потому что доставка их на трассу и последующий монтаж крайне затруднены. Поэтому используется пучок проводов меньших сечений, с которыми легче работать.

Вторая причина заключается в необходимости исключить общее коронирование проводов, для чего необходимо снизить напряженность электрического поля на поверхности провода. С этой целью провода, входящие в пучок, располагают на определенном расстоянии друг от друга по вершинам правильного многоугольника. В результате исключается возможность возникновения общей короны и снижаются потери мощности на местную корону, которые для линий постоянного тока существенно меньше, чем для линий переменного тока.

Для кабельных линий постоянного тока могут быть использованы различные типы кабелей: кабели с бумажно-масляной изоляцией, кабели с маслом под давлением, кабели с газом под давлением. Как показывает опыт, для этой цели наиболее целесообразно применять кабели с бумажной изоляцией и вязкой пропиткой. Электрическая прочность такого кабеля много выше, чем кабеля переменного тока при той же толщине изоляции. Поэтому эти кабели и получили наибольшее применение при сооружении кабельных линий постоянного тока. В настоящее время создан кабель на напряжение 400 кВ и ток 1,25 кА. Наружный диаметр его равен 128 мм.

Кабели с полиэтиленовой изоляцией для линий постоянного тока стали применяться лишь последние несколько лет. Этому предшествовали дли­тельные исследования. Сейчас созданы такие кабели на напряжение до 300 кВ. Эти кабели имеют меньшие размеры и массу, они могут быть уло­жены на поверхности с уклоном, поскольку нет опасности стекания вяз­кой пропитки, они удобнее в монтаже. Поэтому эти кабели получают все большее применение.

Поскольку кабельные линии применяются только для пересечения водных преград, то одной из важных задач снижения стоимости и повышения надежности линии является возможно большее увеличение строительной длины кабеля с целью сокращения числа соединительных муфт, которые всегда являются источником повышенной опасности для кабеля. Для этой цели используются специальные судна-кабелеукладчики с горизонтальной катушкой большого диаметра, величина которого определяется шириной судна. На эту катушку непрерывно подается кабель с завода, расположенного в том же городе, где швартуется судно. Наибольшая длина кабельной линии, сооруженной с помощью такого судна, составляет 200 км с одной соединительной муфтой посредине.

Первые кабельные линии укладывались непосредственно на дно моря, однако они часто повреждались рыболовными тралами или якорями судов. Сейчас кабель укладывается в траншею глубиной до 1,5 м, которая прокладывается с помощью подводных роботов.

К основному оборудованию преобразовательных подстанций относятся преобразовательные трансформаторы, преобразовательные мосты, фильтры токов высших гармоник, линейные (сглаживающие) реакторы, синхронные компенсаторы, конденсаторные батареи. Если говорить о синхронных компенсаторах и конденсаторных батареях, то конструктивно они не отличаются от аналогичных устройств в сети переменного тока. О фильтре токов высших гармоник было сказано выше. Поэтому все эти устройства здесь не рассматриваются.

Преобразовательные трансформаторы работают в более тяжелых условиях, чем обычные трансформаторы в сети переменного тока. Причин здесь несколько. Как отмечалось выше, токи, протекающие по обмоткам трансформатора, содержат высшие гармоники, которые вызывают дополнительный нагрев обмоток и сердечника трансформатора. Кроме того, при каскадном соединении преобразовательных мостов на вентильные обмотки трансформаторов воздействует не только переменное напряжение, трансформируемое из сети, но и постоянное напряжение мостов, включенных ближе к точке заземления. Это влечет за собой необходимость усиления изоляции обмоток трансформатора. Динамическая устойчивость обмоток трансформатора должна быть рассчитана на более сильные воздействия, чем у обычных трансформаторов. Эти воздействия могут возникнуть при некоторых аварийных процессах в преобразователе. Преобразовательные трансформаторы также должны быть рассчитаны и на возможность протекания постоянного тока в некоторых анормальных режимах.

Читайте также:  Схема подключения генератора постоянного тока с независимой обмоткой возбуждения

При включении трансформаторов на холостой ход, а также при включении фильтров высших гармоник или конденсаторных батарей возможны резонансные явления, которые приводят к возникновению значительных перенапряжений, длящихся несколько секунд. На эти перенапряжения должна быть рассчитана изоляция трансформаторов.

Все это в конечном итоге приводит к значительному усилению внутренней изоляции трансформатора, увеличению механической прочности обмоток, а также увеличению сечений проводов обмоток и сечения сердечника трансформатора. В результате расход активных материалов (стали и меди) для преобразовательных трансформаторов примерно в 1,5 раза выше, чем для обычных трансформаторов того же класса напряжения и мощности.

Отличительной особенностью преобразовательных трансформаторов является их более высокое реактивное сопротивление, чем у обычных трансформаторов той же мощности. Это объясняется условиями их работы в преобразовательных схемах. Увеличение сопротивления трансформатора, с одной стороны, диктуется особенностями его конструкции, с другой — оно необходимо для ограничения скорости изменения тока в вентилях в процессе их работы как в нормальных, так и в аварийных режимах. Полная мощность трансформатора обычно превышает мощность питаемого им моста на 20—25 % в связи с большим потреблением реактивной мощности и увеличенными потерями активной мощности от токов высших гармоник. Вентильные обмотки трансформаторов имеют усиленную изоляцию по отношению к земле в связи с необходимостью разделения цепей постоянного и переменного токов. Преобразовательные трансформаторы снабжены устройствами регулирования напряжения под нагрузкой, что необходимо для снижения потребления мостом реактивной мощности. Все вместе взятое приводит к увеличению массы и габаритов трансформаторов, что вызывает большие сложности в их транспортировке от завода-изготовителя к месту установки.

Максимальная мощность преобразовательных трансформаторов, достигнутая в настоящее время, равна 500 MB · А на фазу. По-видимому, эта мощность близка к предельной, и ее значительное увеличение вряд ли возможно.

Одним из основных устройств преобразовательной подстанции, как отмечалось выше, является преобразовательный мост и его главный элемент — высоковольтный управляемый вентиль. Первые электропередачи постоянного тока, построенные в 50—60-х годах XX в., выполнялись с использованием высоковольтных ртутных вентилей. На некоторых электропередачах эти вентили используются и по настоящее время. Однако эти вентили обладают рядом крупных недостатков, определяемых физикой происходящих в них процессов и токсичностью ртути. Поэтому после создания достаточно мощных кремниевых управляемых вентилей-тиристоров в 70-х годах XX в. все новые электропередачи и вставки постоянного тока сооружаются только на их основе.

В настоящее время в результате интенсивного развития силовой полу­проводниковой техники значительно возросли параметры (ток и напряже­ние) обычных тиристоров и появились новые типы полупроводниковых приборов, которые могут быть использованы для создания мощных высо­ковольтных преобразователей. К числу новых типов приборов относятся фототиристоры, запираемые тиристоры, биполярные силовые транзис­торы. Напряжение, которое способен выдержать единичный тиристор в закрытом состоянии, достигает 7—10 кВ, его средний ток равен 2,5—-3 кА. Напряжения других типов полупроводниковых приборов несколько ниже (4-—6 кВ), средние токи примерно такие же.

Достигнутые значения средних токов этих полупроводниковых прибо­ров достаточны для обеспечения необходимого тока в линии, но их напря­жения слишком малы для создания мощных преобразовательных мостов с напряжением в сотни киловольт. Поэтому для создания высоковольтных тиристорных вентилей (ВТВ) с необходимыми параметрами по напряже­нию прибегают к последовательному соединению единичных тиристоров.

Цепочка последовательно включенных тиристоров должна быть обеспечена устройствами для равномерного распределения напряжения между ними, охлаждения, каналами подачи управляющих импульсов на каждый тиристор. Возможные схемы соединения тиристоров преобразовательного моста приведены на рис. 11.13, где представлены три возможные схемы. В схеме 1 в один ВТВ объединены все вентили одной фазы двух преобразовательных мостов. Схема 2 объединяет вентили одного полюса, схема 3 — вентили одной фазы каждого преобразовательного моста.

Конструктивно при создании ВТВ используется модульный принцип. Каждый тиристор со всеми устройствами, обеспечивающими его функционирование, помещается в тиристорную ячейку. Несколько ячеек объединены в модуль, который является заменяемым элементом ВТВ. Несущей конструкцией ВТВ служит жесткий каркас, собранный из фарфоровых стержневых изоляторов. Этот каркас образует пространственную конструкцию из нескольких этажей. На каждом этаже размещены модули, соединенные между собой. Одна из возможных конструкций ВТВ показана на рис. 11.14. Подобные ВТВ устанавливаются в закрытых помещениях. На рис. 11.15 приведен внешний вид вентильного зала ВПТ Шатегей (Канада). Здесь для изоляции от земли используются опорные изоляторы. В сейсмоопасных районах обычно используется подвесная изоляция.

Сейчас некоторые фирмы, выпускающие оборудование для ППТ и ВПТ, разрабатывают конструкции, где вся преобразовательная подстанция выполняется по модульному принципу, а вентильные залы отсутствуют. Это должно привести к снижению стоимости такой станции.

Существуют и другие конструкции ВТВ, где тиристоры размещены в баке, заполненном трансформаторным маслом. Такие ВТВ могут быть установлены на открытом воздухе, однако в этой конструкции затруднена возможность ремонта. В качестве охлаждающей среды для тиристоров могут использоваться воздух, трансформаторное масло, деионизированная дистиллированная вода. В настоящее время преимущество отдается деионизированной воде вследствие ее большей теплоемкости, пожаробезопасности, отсутствию токсичности.

Большую сложность представляет передача управляющих импульсов, которые должны подаваться с весьма высокой точностью по времени с потенциала земли на потенциал вентиля. Сейчас для этой цели используется световолоконная оптика. Система управления и контроля тиристоров построена таким образом, что с потенциала земли на вентиль идет поток управляющих воздействий, а с потенциала вентиля идет непрерывная информация о состоянии каждого тиристора. При необходимости преобразовательный блок выводится из работы, и модули, где есть поврежденные тиристоры, заменяются на исправные.

Линейные (сглаживающие) реакторы включаются в каждый полюс линии и являются многофункциональными элементами электропередачи. Они не только сглаживают пульсации тока полюса, но и обеспечивают заданную скорость изменения тока линии при коротких замыканиях в линии и нарушениях работы инвертора. Кроме того, эти реакторы предназначены для защиты преобразователей от волн перенапряжений, которые могут прийти с линии.

Обмотка реактора должна быть изолирована от земли на напряжение полюса. Кроме этой постоянной составляющей на изоляцию обмотки в нормальных режимах действует и переменная составляющая выпрямленного напряжения. Последняя зависит от углов управления, с которыми работает преобразователь, и возрастает с их увеличением. Эти две составляющие напряжения создают различные нагрузки на изоляцию обмотки, что существенно усложняет ее конструирование.

Магнитная система реактора выполняется без внутреннего сердечника, но с магнитными шунтами и большим количеством воздушных зазоров, чтобы исключить насыщение реактора постоянным током. Обмотка реактора и его магнитная система располагаются в баке, заполненном трансформаторным маслом. Для прохода концов обмотки сквозь крышку бака используются или маслонаполненные, или элегазовые вводы.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник