Меню

Контроллер для малых токов

Датчики электрического тока

Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами. Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи. Неоценимую помощь в этом могут оказать датчики тока.

практика применения датчиков тока

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

датчик напряжения в сборе

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация и схемы подключения

Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома. При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы. Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.

Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.

Схема описанных измерений представлена на рисунке:

слева – измерение малых токов; справа - измерение больших токов

Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей. Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется. Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.

Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания. Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки. Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Подключение датчика постоянного тока

подключение датчика переменного тока

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.
Читайте также:  Что показывает форма тока

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

отключение питающего насоса датчиком тока при низком уроне воды в резервуаре

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.

датчик тока фирмы Arduino. Стрелкой указан USB-разъём

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

самодельный датчик тока

Видео по теме

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

13.11.2014

Контроллерное управление электродвигателем

Контроллерное управление применяется главным образом для электродвигателей постоянного тока повторно-кратковременного режима работы. Оно предусматривает, помимо пуска и остановки также регулирование скорости вращения, изменение направления вращения (реверсирование) и торможение электродвигателя. Кроме того, при контроллерном управлении часто осуществляют защиту электродвигателей от ненормальных условий работы: перегрузки, понижения или исчезновения напряжения в питающей его сети. Такая защита достигается при помощи релейно-контакторной аппаратуры.

Релейно-контакторная аппаратура размещается на особой, так называемой защитной панели, встраиваемой в контроллер или монтируемой отдельно от него.

Регулирование скорости вращения электродвигателя постоянного тока при контроллерном управлении чаще всего осуществляется при помощи сопротивлений, включаемых в цепь якоря.

Сопротивление параллельно цепи якоря

Динамическое торможение электродвигателя

Иногда при малых нагрузках падение напряжения на зажимах последовательно включенного сопротивления оказывается недостаточным для получения низкой скорости вращения электродвигателя. В этом случае, кроме последовательного сопротивления, применяют еще сопротивление, подключаемое параллельно цепи якоря (рис. 1).

Низкая устойчивая скорость вращения электродвигателя («ползучая» скорость) получается потому, что в этом случае падение напряжения на зажимах якоря обусловливается не только током якоря, а суммой токов, проходящих по якорю Iя и по параллельно включенному сопротивлению Iш.

Читайте также:  Электроизмерительные приборы в цепях постоянного тока

Довольно часто в схемах контроллерного управления применяют комбинированный способ регулирования скорости вращения: понижение номинальной скорости достигается введением сопротивления в цепь якоря, а повышение — введением сопротивления в цепь параллельной обмотки возбуждения.

Изменение направления вращения электродвигателей обычно достигается изменением направления тока в цепи якоря.

Электрическое торможение двигателя осуществляется одним из трех способов. Рекуперативное торможение чаще всего предусматривается в схемах управления грузовыми лебедками. При опускании тяжелого груза его вес может разогнать электродвигатель до скорости, превышающей скорость вращения холостого хода. Так как обмотка возбуждения электродвигателя включена на полное напряжение сети, то противоэлектродвижущая сила двигателя становится выше приложенного напряжения и электродвигатель начинает отдавать энергию в сеть, в связи с чем он и затормаживается. Никаких специальных переключений схемы в режиме рекуперативного торможения в этом случае не требуется, и оно осуществляется автоматически, когда скорость вращения двигателя увеличивается сверх допустимой.

Для динамического торможения якорь электродвигателя отключается от питающей сети и замыкается на сопротивление торможения (рис. 2).

При этом у электродвигателя параллельного возбуждения обмотка возбуждения остается включенной на полное напряжение сети (рис. 2, а), а у электродвигателя последовательного возбуждения эта обмотка отключается от якоря и получает питание от сети через добавочное сопротивление (рис. 2, б).

У электродвигателей смешанного возбуждения динамическое торможение осуществляется при отключенной последовательной обмотке и при питании параллельной обмотки возбуждения от полного напряжения сети. При динамическом торможении направление тока в якоре электродвигателя меняется на обратное, так как напряжение сети равно нулю.

Эффективность динамического торможения зависит от величины тормозного сопротивления. Чем это сопротивление меньше, тем больше ток, отдаваемый якорем, и тем быстрее двигатель останавливается. Однако по мере уменьшения скорости вращения ток, отдаваемый электродвигателем, уменьшается и эффективность торможения снижается.

Торможение противотоком производится изменением полярности приложенного к якорю двигателя напряжения. При этом двигатель в момент остановки отключается от сети, так как иначе он начнет вращаться в противоположную сторону. Следовательно, торможение противотоком имеет место у каждого реверсируемого электродвигателя, если реверс производится до остановки двигателя.

При торможении противотоком знак э. д. с. электродвигателя остается прежним, а знак приложенного напряжения меняется и совпадает со знаком э. д. с. Поэтому величина тока, проходящего через якорь электродвигателя, увеличивается почти вдвое против имеющей место при нормальном пуске, даже в случае наличия в цепи якоря (в момент торможения противотоком) пускового сопротивления.

На рис. 3 изображена схема контроллерного управления электродвигателем параллельного возбуждения. Схема предусматривает пуск, реверсирование и торможение электродвигателя. При включении рубильника Р в нулевом положении контроллера обмотка возбуждения электродвигателя подключается на полное напряжение сети.

В положении контроллера «I вперед» ток от зажима плюс сети через контакты 10 и 9 контроллера проходит через якорь и дополнительные полюсы электродвигателя; далее через искрогасительную катушку ИК, контакты 1 и 2 контроллера ток, пройдя все пускорегулирующее сопротивление P1 — P4, через зажимы 6,8 и 7 возвращается в минус сети. Электродвигатель начинает вращаться с наименьшим числом оборотов.

Схема контроллерного управления электродвигателем параллельного возбуждения

В положении контроллера «II вперед» из цепи выводится сопротивление P1, вследствие чего электродвигатель увеличивает скорость вращения.

В последующих положениях («III, IV и V вперед») поочередно выводятся сопротивления Р2, Р3, P4 и якорь электродвигателя, подключенный на полное напряжение сети, развивает номинальную скорость вращения. При повороте маховика контроллера из положения «V вперед» в нулевое якорь электродвигателя отсоединяется от сети и подключается на тормозное сопротивление СТ. Так как обмотка возбуждения осталась включенной, электродвигатель переходит в режим динамического торможения.

При повороте маховика контроллера в положение «I назад» ток от зажима + (плюс) сети через контакты контроллера 10, 11, 8 и 6 проходит через пускорегулирующее сопротивление в направлении от P4 к P1; затем через контакты 2, 1, через катушку ИК, дополнительные полюсы, через якорь электродвигателя, зажимы 9 и 7 контроллера ток возвращается в — (минус) сети.

Таким образом, ток в якоре изменяет направление, что при неизменном направлении потока влечет реверс электродвигателя.

Если из положения «V назад» (или V вперед») перевести маховик контроллера в положение «I вперед» (или «I назад»), не дожидаясь остановки электродвигателя при нулевом положении контроллера, то начинается торможение электродвигателя противотоком через пусковое сопротивление P1— P4.

Сопротивление PC, включенное параллельно обмотке возбуждения, служит для ее защиты от повышения напряжения при выключении рубильника Р.

Источник



ПРИСТАВКА ИЗМЕРИТЕЛЬ МАЛЫХ ТОКОВ

Для измерения токов в диапазоне микро- и наноампер, потребуется усилитель с активным преобразователем. Из-за очень большого усиления операционного усилителя падение напряжения во время измерений с помощью амперметра с активным преобразователем может быть исключено. Благодаря этому результаты измерений намного точнее, чем в случае амперметров с шунтом. Поскольку падение напряжения в активном преобразователе близко к нулю, также можно устранить влияние колебаний напряжения на работу устройства.

Читайте также:  Особенности цепи переменного тока с емкостным сопротивлением

Принципиальная схема микро- наноамперметра

Типичный пример амперметра с активным преобразователем приведен на схеме ниже:

Чтобы эта зависимость выполнялась в реальных условиях, входное напряжение дисбаланса должно быть очень маленьким, а входной поляризационный ток пренебрежимо малым. Эти параметры становятся особенно важными когда дело доходит до измерений токов порядка пикоампер, на результат которых будет влиять входной поляризационный ток. Есть несколько примеров пикоамперметров на основе микросхемы LMC662. Согласно даташита, м/с имеет очень низкий входной поляризационный ток, порядка 2 фемтоампер.

В этом устройстве использовался усилитель TS1001 от Touch Stone. Схема имеет посредственные параметры и на первый взгляд не подходит измерять такие маленькие токи. Но особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания!

TS1001 также имеет относительно небольшой входной поляризационный ток, который обычно составляет 25 пА. Это совершенно низкое значение, когда дело доходит до измерения тока в диапазоне наноампер. Поскольку входное напряжение дисбаланса является постоянным во время измерения, точность не снижается из-за устранения этого значения только путем обнуления.

На принципиальной схеме ниже амперметр с активным преобразователем на основе микросхемы TS1001. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Как упоминалось ранее, входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В.

Усилитель может питаться от одного напряжения с мультиметром или использовать виртуальную массу. В случае несимметричного источника измеряемый ток должен поступать на неинвертирующий вход усилителя, чтобы напряжение появлялось на выходе. Следовательно, это решение более выгодно для измерений постоянных токов, где поляризация тока может быть заранее определена. Использование виртуальной массы, как показано на схеме ниже, позволяет измерять постоянные и переменные токи. Схема может питаться от одной 1,5-вольтовой батареи.

Поскольку приставка имеет довольно низкое произведение коэффициента усиления и предельной частоты, можно измерять только токи с низкой изменчивостью (до 60 Гц).

Точность используемых резисторов определяет точность всего измерителя. Советуем выбрать с допуском 0,1%. Также важно использовать резисторы с низким температурным коэффициентом.

Все устройство питается от одной батареи и поскольку оно используется для измерения только постоянного тока, источник питания с виртуальной массой был отложен.

Если же необходимо измерить более низкие токи или более высокие частоты, то можете выбрать другой операционный усилитель — например AD8603, который совместим с выводами TS1001 и может использоваться для измерения токов в диапазоне пикоампер.

Источник

Контроллеры тока ЭКТ и ЭКТМ

ООО «СЭЗ» (г.Красноярск) с 2002-го года является изготовителем приборов защиты электродвигателей (трансформаторов, и других ответственных электроустановок), таких как:

  • электронные контроллеры расцепителя ЭКР1, ЭКР2, ЭКР3;
  • счетчики-регистраторы РОС1-01, РОС1-02; реле повторного пуска (самозапуска) РПП-2;
  • пульт управления ПУ-04; реле вращения РВ-1; реле минимального тока РМТ-2, РМТ-10.

С 2008 года предприятие ООО «СибЭлектроЗащита» разработало и стало производить новое изделие- Электронный контроллер тока (ЭКТ), в котором были учтены замечания и предложения потребителей по доработке изделий серий РКЗ, ЭКР, ЭКРМ, РТЗЭ, КСКН.

Электронный контроллер тока (ЭКТ)

Электронный контроллер тока (ЭКТ) предназначен для установки в цепях питания трехфазных электроустановок переменного тока (электродвигателей, трансформаторов и др. ответственных электроагрегатов) с целью повышения надежности их работы.

Электронный контроллер тока (ЭКТ) выдаёт сигнал о наступлении аварийного события в соответствии с заданными параметрами в виде разомкнутого/замкнутого контакта электронного ключа и светового сигнала при наступлении одного из следующих событий:

  • коротком замыкании;
  • холостом ходе электроустановки (сухом ходе);
  • превышении тока электроустановки выше номинального;
  • превышении тока электроустановки выше максимально допустимого;
  • пропаданию одной или двух фаз;
  • перекосе фаз по току;
  • низком сопротивлении изоляции (

Источник