Меню

Методика измерения сопротивления изоляции проводов кабелей

Документы

1. Цель проведения измерения.

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

2. Меры безопасности.

2.1 Технические мероприятия.

До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.

2.2 Организационные мероприятия.

Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.

3. Нормируемые величины.

Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.5 МОм, (ПТЭЭП п. 28.1)

4.
Применяемые приборы.

Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и, Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.

5. Измерение сопротивления изоляции электрооборудования.

5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

При измерении сопротивления изоляции необходимо учитывать следующее:

— измерение сопротивления изоляции кабелей (за ис­ключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение со­противления изоляции проводов всех сечений производит­ся мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;

— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или

10 замеров: L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.

Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуа­тации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется вы­полнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (оп­ределение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).

Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заклю­чение об их пригодности делается после испытания их пе­ременным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.

5.2. Измерение сопротивления изоляции силового элекрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от темпе­ратуры. Замеры следует производить при температуре изо­ляции не ниже +5°С кроме случаев, оговоренных специ­альными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния вла­ги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обус­ловленных разностью температур, при которых проводи­лись измерения, следует откорректировать эти результаты по указаниям изготовителя.

Степень увлажненности изоляции характеризуется ко­эффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложе­ния напряжение мегаомметра (R60) к измереннму сопро­тивлению изоляции через 15 секунд (R15),

Кабс = R60/R15

При измерении сопротивления изоляции силовых транс­форматоров используются мегаомметры с выходным на­пряжением 2500 В.

Измерения проводятся между каждой обмоткой и кор­пусом и между обмотками трансформатора.

При этом R60, должно быть приведено к результатам за­водских испытаний в зависимости от разности темпера­тур, при которых проводились испытания.

Значение коэффициента абсорбции должно отличать­ся (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.

Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в при­ложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивле­ние изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.

Корпус электроинструмента и соединенные с ним де­тали, выполненные из диэлектрического материала, на вре­мя испытания должны быть обернуты металлической фоль­гой, соединенной с контуром заземления.

Если сопротивление изоляции при этом будет не менее 10 МОм, то испытание изоляции повышенным напряже­нием может быть заменено измерением ее сопротивления мегаомметром с выходным напряжением 2500 В в течение 1 минуты.

У переносных трансформаторов измеряется сопротив­ление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях сопротивления изоляции первичной обмотки, вторичная должна быть зам­кнута и соединена с корпусом.

Сопротивление изоляции автоматических выключате­лей и УЗО производятся:

1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

2. Между каждым разноименным полюсом и соединен­ными между собой оставшимися полюсами при зам­кнутом состоянии выключателя или УЗО.

3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р50345-99) и УЗО при измерениях по п.п. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.

Для остальных автоматических выключателей (ГОСТ Р50030.2-99) во всех случаях сопротивление изоляции дол­жно быть не менее 0,5 МОм.

Читайте также:  Преимущества проводов марки сип

6. Измерение сопротивления изоляции прибором Е6-24

6.1.
Внешний вид прибора показан на рисунке 1

1, 2, 3 — гнезда для подключения кабелей

5 — индикатор единиц измерения (сверху вниз соответственно:

6 — индикатор испытательных напряжений (слева направо соответственно: 500В, 1000В, 2500В)

7 — индикатор заряда батареи

8 — переключатель вкл и выкл состояния прибора

9 — кнопка установки испытательного напряжения

10 — кнопка вывода результатов из памяти

11 — кнопка измерения сопротивления

6.2.
Перед началом измерений необходимо убедится, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию вблизи точки замера от пыли и грязи и на 2-3 мин. Заземлить объект для снятия с него возможных остаточных зарядов. После окончания измерений испытываемый объект необходимо разрядить кратковременным заземлением.

Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (обычно не меньше 100 МОм).

Перед пользованием мегаомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы “бесконечность”, во втором — у нуля.

Для того, чтобы на показания мегаомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерении в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегаомметра. При таком подключении токи утечки по поверхности изоляции отводятся в землю, минуя обмотку прибора.

Значение сопротивления изоляции в большей степени зависит от температуры. Сопротивление изоляции следует измерять при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “+” рекомендуется подключать к токоведущей части испытываемой установки, а зажим “-” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не

соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на индикатору мегаомметра через 60 с, которое отсчитывается автоматически.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены. При наличие на объекте переменного напряжения мегаомметр определит его автоматически. При отсутствии напряжения можно начинать проводить измерения.

6.3. Переключение значения испытательного напряжения 500 В, 1000 В и 2500 В производится кратковременным нажатием кнопки «UR».

6.4. Для проведения измерения необходимо нажать и удерживать кнопку «RX». После отпускания кнопки процесс измерения прекратится. Двойное нажатие кнопки «RX» приводит к её захвату, и процесс измерения будет происходить в течение заданного интервала времени без её удержания (от 1 до 10 минут), выставить который можно кнопками UR и МRх/К после включения мегаомметра при нажатой кнопке «RX». При необходимости досрочного отключения процесса измерения следует повторно нажать кнопку «RX».

6.5. Загорание на индикаторе символа «П» (переполнение) указывает что сопротивление объекта измерения превышает предел показания прибора 99,9 Гом. Так же индикация «П» может появляться при переходных процессах, поэтому в таком случае следует продолжать измерение в течении ещё 10 секунд.

6.6. Отстыковку кабелей от объекта следует проводить не ранее 10 секунд после окончания подачи испытательного напряжения.

7.1. Порядок проведения измерения сопротивления изоляции

Шаг 1 Посредством поворотного переключателя выберите функцию Изоляция.

С помощью кнопок и осуществляется выбор между функциями «R ISO» и «ДИАГНОСТИКА». Выберите опцию «R ISO». Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите значения следующих параметров и пределов измерения:

Номинальное измерительное напряжение,

Минимальное предельно допустимое значение сопротивления.

Шаг 3 Подключите измерительный кабель к испытываемому объекту. Для проведения измерения сопротивления изоляции следуйте схеме подключения, показанной на рисунке 2. При необходимости обратитесь к меню помощи. Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должны использоваться специальные измерительные провода, так как испытательный сигнал подается на другие измерительные клеммы, чем при измерениях при UN≤ 1 кВ! Стандартный трехпроводный измерительный кабель, кабель с евро — вилкой и щупы «commander» могут использоваться только при измерениях сопротивления при напряжении UN≤ 1 кВ!

Рисунок.2: Подключение 3-проводного измерительного кабеля и щупа с

наконечником (UN ≤1 кВ)

Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должен использоваться двухпроводный 2,5 кВ-й измерительный кабель. Подключение в соответствие со схемой подключения, показанной на рисунке 3

Рисунок 3: Подключение двухпроводного 2,5 кВ-го измерительного кабеля (UN =2,5 кВ)

Шаг 4 Перед началом измерений проверьте отображаемые предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите и удерживайте кнопку ТEST, пока результат не стабилизируется. Во время измерений на дисплее отображается фактическое значение сопротивления. После того, как кнопка TEST отпущена, отображается последнее измеренное значение, сопровождающееся оценкой результата в виде «соответствует / не соответствует» (если применяется).

R… … … … Сопротивление изоляции,

Um… … … Измерительное напряжение.

Сохраните результаты измерений для дальнейшего документирования.

7.2. Классификация результатов измерения сопротивления изоляции при сохранении

При сохранении, после нажатия кнопки Память, доступны десять подфункций сопротивления изоляции:

Процедура измерения сопротивления изоляции протекает одинаково, в независимости от того, какая подфункция выбрана. Однако важно выбирать соответствующую подфункцию, чтобы в дальнейшем правильно классифицировать результаты измерений для их корректного занесения в протоколы измерений.

8. Оформление результатов измерений.

Результаты измерения сопротивления изоляции проводов, кабелей, обмоток машин и аппаратов записываются в протокол, заключительная часть которого характеризует качество изоляции. Оформленный протокол прилагается к отчету по наладке электрооборудования.

Читайте также:  Как разрезать провод для выключателя

Источник

Нормы и порядок измерения сопротивления изоляции кабеля

Надежная эксплуатация электрических проводников возможна исключительно при должном контроле. Одним из важнейших показателей их состояния является изоляция. Рассмотрим, как и когда необходимо проверять сопротивление.

Необходимость проведения замеров

Изоляционный слой электрических проводников предназначен для обеспечения:

  • защиты от воздействия внешних факторов;
  • защиты обслуживающего персонала;
  • надежности работы электрооборудования.

На состояние изоляции влияют следующие факторы:

  • окружающая среда (повышенная температура, влажность и т. д.);
  • превышение допустимых токовых нагрузок;
  • воздействие механических сил;
  • естественный износ эксплуатационного ресурса.

При повреждении изоляционного покрытия могут фиксироваться утечки тока, короткие замыкания и несчастные случаи с людьми. Выполнение периодического контроля качества изоляции позволяет предотвратить указанные проблемы. Контроль осуществляется посредством замера сопротивления специальными техническими средствами.

Подготовка к измерению сопротивления изоляции кабеля

Замер сопротивления изоляции должен выполняться в соответствии с техническими и организационными мероприятиями. Прозвонить проводник можно только после отключения кабельной линии со всех сторон. В противном случае будет выполнена проверка сопротивления совместно с подключенным электрическим оборудованием.

Измерения должны осуществляться с учетом температуры окружающего воздуха. Она влияет на минимально допустимые показатели изоляционного слоя.

Перед проведением замера следует убедиться в отсутствии напряжения, используя указатель на соответствующий уровень напряжения. Затем закоротить проводник или установить заземление. Это требуется для снятия остаточного или наведенного потенциала. Далее вывешиваются плакаты:

  • запрещающие — «Не включать, работают люди»;
  • указательные — «Заземлено».

Приборы и средства измерения

Измерение сопротивления изоляции токопроводящих жил проводится мегаомметрами или специальными установками. Второй вариант, как правило, применяется для проводов напряжением более 1 кВ. Испытания проводятся согласно установленным требованиям ПТЭ. Суть метода заключается в подаче напряжения от постоянного или переменного источника питания с постепенным увеличением его значения до максимально допустимого для конкретного типа кабеля. При фиксации пробоя изоляционного покрытия по итогам испытаний эксплуатация кабельной линии запрещается.

Использование мегаомметра позволяет зафиксировать снижение качества изоляции без ее разрушения. Существуют различные модификации данных устройств, которые можно разделить на две категории:

  • электромеханические;
  • электронные.

Измерительные приборы выпускаются со следующими номинальными уровнями напряжений: 100, 500, 1000 и 2500 В.

Принцип действия мегаомметра основан на подаче напряжения от постоянного источника питания и фиксации величины образуемого тока. После сопоставления указанных величин, в соответствии с законом Ома, на шкалу или монитор измерительного устройства выдается величина сопротивления.

Главным конструктивным отличием электромеханического и электронного мегаомметра является источник постоянного тока. Для первых предусматривается встроенный ручной генератор, а для вторых аккумуляторная батарея.

Нормы сопротивления изоляции для различных кабелей

Встречаются следующие виды электрических проводников:

  1. Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
  2. Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
  3. Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.

Источник



Электрическое сопротивление силовых кабелей

Содержание

  1. Методика измерения сопротивления изоляции низковольтных силовых кабелей
  2. Как производится измерение
  3. Цена на цифровые омметры
  4. Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей
  5. Видео – Измерение сопротивления изоляции силового кабеля с помощью мегаомметра
  6. Измерение сопротивления изоляции контрольных кабелей
  7. Нормы сопротивления изоляции кабеля
  8. Нормы сопротивления изоляции для различных кабелей
  9. Приборы и средства измерения сопротивления изоляции кабеля
  10. Цены на цифровые мегаомметры
  11. Подготовка к измерению сопротивления изоляции кабеля
  12. Определение электрического сопротивления для кабеля, провода и шнура
  13. КЛАСС 1. Жилы одножильных и многожильных кабелей и проводов
  14. КЛАСС 2. Жилы одножильных и многожильных кабелей и проводов
  15. КЛАСС 3. Жилы одножильных и многожильных кабелей и проводов
  16. КЛАСС 4. Жилы одножильных и многожильных кабелей, проводов и шнуров
  17. КЛАСС 5. Жилы одножильных и многожильных кабелей, проводов и шнуров
  18. КЛАСС 6. Жилы одножильных и многожильных кабелей, проводов и шнуров
  19. Что такое изоляция жил, проводящих ток

Но сегодня мы остановимся на кабелях только одного вида – силовых, а если точнее – на их сопротивлении. Это довольно важный параметр кабеля (точнее тут два параметра в одном – сопротивление самого кабеля, то есть его жил и сопротивление его изоляции). И если сопротивление жил кабеля должно быть по возможности низким (в противном случае много энергии будет потрачено на преодоление этого сопротивления и сопутствующий ему нагрев жилы), то сопротивление изоляции должно стремиться к максимальному. Для различных типов силовых кабелей существуют свои установленные критерии и стандарты, о которых мы и поговорим.

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Низковольтными силовыми кабелями считаются кабели с напряжением до 1 кВ (1000 В).

В соответствии с нормативными документами, сопротивление изоляции таких кабелей должно быть не менее 0,5 МОм (500 000 Ом). Но с течением времени сопротивление изоляции может снижаться, на него могут влиять внешние факторы, такие как перегревы в результате коротких замыканий или перегрузок, механические воздействия – удары, перегибы, а также температура и влажность, также не стоит забывать об элементарной поляризации (старении изоляции). Поэтому проверку сопротивления следует производить не реже одного раза в 36 месяцев, а визуальный осмотр – не реже 1-го раза в 6 месяцев.

Как производится измерение

Замеры производятся мегаомметром для измерения сопротивления изоляции кабелей

При измерениях сопротивления силовых кабелей всегда нужно учитывать температуру окружающей среды и производить их при температуре не ниже +5.

Такие ограничения введены по той причине, что в кабеле может присутствовать влага, которая при отрицательных температурах превратится в лед, не проводящий электрический ток. Сами замеры производятся мегаомметром, внесенным в госреестр приборов, разрешенных для измерения сопротивления изоляции кабелей и проходящим ежегодную поверку.

Читайте также:  Клещи для зачистки проводов от изоляции gross

Перед началом измерений следует обесточить линию, убедиться в отсутствии напряжения на тестируемом кабеле. Другой конец кабеля отключается от потребителя, жилы его разводятся на максимальное расстояние, а рядом выставляется человек для предотвращения непредвиденных ситуаций. Также вывешиваются запрещающие (“Не включать, работают люди!”) и указательные (“Заземлено”) плакаты. Непосредственно измерение производится мегомметром на 2500 В в течении 1 мин в нижеприведенной последовательности:

  1. Измерение сопротивления между фазными жилами: (А-В, В-С, А-С).
  2. Между фазными жилами и нулем: (А-N, В-N, С-N).
  3. В случае. если кабель пятижильный, также замеряют сопротивление между жилами и землей (А-РЕ, В-РЕ, С-РЕ).
  4. Между нулем и землей, предварительно отключив нуль от шинки (N-PE).

Мегаомметр цифровой 2500 В

По окончания измерений результаты записываются и сравниваются с допустимыми значениями, после чего составляется протокол, в котором отображаются:

  • последовательность произведенных действий;
  • тип использовавшихся для измерений средств;
  • температурный режим.

В конце пишется заключение о состоянии кабелей.

Цена на цифровые омметры

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей

Высоковольтными силовыми кабелями называют кабели с напряжением 1000 В и выше. Сопротивление изоляции высоковольтных силовых кабелей должно быть не ниже 10 МОм (10 000 000 Ом).

Высоковольтные силовые кабеля

Условия и подготовка к измерениям такие же, как и при измерении низковольтных силовых кабелей: отключается электропитание и потребители, учитывается температура воздуха (также не ниже +5), вывешиваются плакаты и оставляется человек у другого конца испытуемого кабеля.

Алгоритм измерения высоковольтных кабелей отличается от низковольтного, измерения тут проводят не непосредственно между жилами, а между жилой и землей, предварительно заземлив прочие жилы.

Измерение производится как и в случае проверки низковольтного кабеля мегомметром на 2,5 кВ в нижеприведенной последовательности. Каждое измерение должно длиться по 1 минуте.

  1. Заземлить все жилы кабеля.
  2. Один зажим мегомметра подключить на землю, второй – на проверяемую жилу.
  3. Заземлить проверенную жилу и снять заземление со следующей проверяемой.

Вышеописанные действия повторяются с каждой проверяемой жилой, проверенные при этом нужно обязательно заземлять, делается этого для того. чтобы снять остаточное либо наведенное напряжение. Как и в случае с низковольтным кабелем, данные записываются и протоколируются.

Видео – Измерение сопротивления изоляции силового кабеля с помощью мегаомметра

Измерение сопротивления изоляции контрольных кабелей

Контрольными называют кабели, не предназначенные для работы в цепях с большой нагрузкой. В основном они предназначены для работы во вторичных цепях и управления различными коммутационными устройствами – реле, пускателями, а также устройствами контроля и защиты.

Сопротивление изоляции контрольных кабелей должно быть не менее 1 МОм.

Подготовительные работы те же, что и при измерении прочих типов кабеля:

  1. Отключение питания.
  2. Проверка отсутствия напряжения.
  3. Вывешивание табличек) – обязательны!

Измерение производится также мегомметром на 2500 В по тому же алгоритму, что и высоковольтные кабели, единственным отличием является необязательность отключения потребителей. Как и в предыдущих случаях, время измерения сопротивление каждой жилы составляет 1 минуту. По завершении измерительных работ результаты также записываются, а в конце составляется протокол и заключение о допустимости дальнейшей эксплуатации кабеля.

Нормы сопротивления изоляции кабеля

Для сопротивления изоляции кабеля существуют определенные госты, приведенные в данной таблице:

Наименьшее допустимое сопротивление изоляции аппаратов вторичных цепей и электропроводки

Нормы сопротивления изоляции для различных кабелей

  1. Высоковольтные силовые кабели – сопротивление не нормировано, но не не ниже 10 МОм.
  2. Низковольтные силовые кабели – не менее 0,5 МОм.
  3. Контрольные кабели – не ниже 1 МОм.

Приборы и средства измерения сопротивления изоляции кабеля

Измерение сопротивления изоляции производится специальным прибором – мегаомметром (мегометром). Мегомметры по своему принципу работы делятся на 2 вида – электронные и электромеханические. Удобнее, конечно, работать с электронными – они автоматически рассчитают влажность кабеля, степень старения изоляции, запомнят все данные и внесут в компьютер. Но несмотря на все эти преимущества цифровых приборов, наряду с ними по-прежнему используются электромеханические. Как электронные, так и электромеханические мегомметры внесены в госреестр и должны проходить ежегодную поверку. После прохождения госповерки на прибор наклеивается голограмма и ставится штамп с указанием серийного номера мегомметра и даты следующей поверки.

Мегаомметры механический и электронный

Разница этих приборов не только в том. что один из них с цифровой индикацией, а второй – со стрелочной, разница даже в самом процессе проведения измерений. Цифровой мегомметр, например, достаточно просто подключить к жилам кабеля как описано выше, произвести измерение и получить результат, который необязательно даже записывать (да, это порой еще делают, но запись в блокнот – просто дань традиции, а так – умная машинка сама все измерит, вычислит и запомнит). Алгоритм работы со стрелочным иной – если нужно узнать влажность кабеля, то производя измерение, фиксируют показания прибора на 15-й секунд и на 60-й, после чего, разделив результат R60 на R15, получают коэффициент абсорбции (степень увлажнения) кабеля. Насколько критично увлажнение можно узнать из таблицы, приведенной на рисунке.

Коэффициент абсорбции (степень увлажнения) кабеля

Цены на цифровые мегаомметры

Подготовка к измерению сопротивления изоляции кабеля

Подготовительные работы приблизительно одинаковы при проверки всех типов кабеля и производятся в следующей последовательности:

  1. Отключение питания и потребителей (исключение – контрольные кабели, отключение потребителей от которых не обязательно).
  2. Вывешивание запрещающих и указательных табличек, также выставление на противоположном конце кабеля человека для охраны.
  3. Снятие остаточного или наведенного напряжения путем заземления.

Также важен учет температурного режима, т.к. при температуре ниже +5 измерения сопротивления кабелей не производятся. Приступать к измерениям разрешается лишь после выполнения всех пунктов подготовительных работ.

Определение электрического сопротивления для кабеля, провода и шнура

Электрическое сопротивление жил кабелей, проводов и шнуров на 1 км длины, а также их сечение и количество проволок в жиле, регламентировано стандартом Гост 22483-77 и разделено на классы, причем к классам 1 и 2 относятся медные и алюминиевые жилы, предназначенные для кабелей и проводов стационарной прокладки. Жилы проводов и шнуров нестационарной прокладки и стационарной прокладки, требующей повышенной гибкости при монтаже, относятся к классам 3-6. По классам и будем делить таблицы сопротивления и прочих параметров шнура.

Источник