Меню

Ограничитель тока до 10а

Ограничитель мощности OM-3 однофазный, 0,5-5кВт, 16А, 1NO/NC

0)window.scrollBy(0,-100);»>

1. Олег, 12.04.2019 10:38

Здравствуйте!
Ограничитель выключает абонента при повышении включает сам, после временной задержки. Всели верно?

Добрый день, Олег.
Ограничитель мощности OM-3 предназначен для контроля потребления мощности в однофазных сетях и отключения питания от потребителя в случае превышения потребления электроэнергии свыше установленного значения. Подключение происходит с установленной задержкой.

Отправляя данные, вы соглашаетесь с политикой конфиденциальности.

0)window.scrollBy(0,-100);»>

Отправляя данные, вы соглашаетесь с политикой конфиденциальности.

Способы получения заказов

Самовывоз в Москве — подробнее.

— Минимальная сумма заказа отсутствует.
— г. Москва, ул.Новохохловская, д.91, стр.10.
— Пн-Пт c 9.00 до 20.00; Сб с 9:00 до 18:00; Вс — выходной.

Оплата:

— наличными при получении.
— банковской картой через терминал.
— банковский перевод по выставленому счету
(зачисление оплаты происходит в течении суток)

Доставка по Москве — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей в пределах МКАД.
— Пн-Сб с 10:00 до 18:00; Вс — выходной.

Оплата:

— наличными при получении.
— банковский перевод по выставленому счету
(зачисление оплаты происходит в течении суток)

Доставка по Московской области — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 500 рублей до 10-ти км. от МКАД.
— 40 рублей за 1 км. от МКАД + 300 рублей в пределах МКАД, осуществляется в зависимости от суммы заказа.
— Пн-Сб с 10.00 до 18.00.

Оплата:

— наличными при получении.
— банковский перевод по выставленому счету
(зачисление оплаты происходит в течении суток)

Доставка в города Московской области Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Курьерской Службы при получении.

Отправка в города России Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Курьерской Службы при получении.

Отправка в города РФ Транспортной Компанией — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей доставка до терминала Транспортной Компании в г.Москве.
— Все услуги Транспортной Компании оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Транспортной Компании при получении.

Способы получения заказов

— Минимальная сумма заказа отсутствует.
— г. Москва, ул.Новохохловская, д.91, стр.10.
— c 10.00 до 20.00 по рабочим дням РФ.
— заказ оплачивается при получении.

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей в пределах МКАД.
— с 10.00 до 18.00 по рабочим дням РФ.
— заказ оплачивается при получении.

  • Доставка по Московской области — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 500 рублей до 5-ти км. от МКАД.
— 40 рублей за 1 км. от МКАД + 300 рублей в пределах МКАД, осуществляется в зависимости от суммы заказа.
— с 10.00 до 18.00 по рабочим дням РФ.
— заказ оплачивается при получении.

  • Доставка в города Московской области Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа, оплата услуг Курьерской Службы при получении.

  • Отправка в города России Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа, оплата услуг Курьерской Службы при получении.

  • Отправка в города РФ Транспортной Компанией — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей доставка до терминала Транспортной Компании в г.Москве.
— Все услуги Транспортной Компании оплачиваются покупателем.
— Предоплата заказа, оплата услуг Транспортной Компании при получении.

Способы получения заказов

— Минимальная сумма заказа отсутствует.
— г. Москва, ул.Новохохловская, д.91, стр.10.
— c 10.00 до 20.00 по рабочим дням РФ.

Оплата:

— наличными при получении.
— банковской картой через терминал.
— банковский перевод по выставленому счету
(поступление происходит в течении суток)

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей в пределах МКАД.
— с 10.00 до 18.00 по рабочим дням РФ.

Оплата:

— наличными при получении.
— банковский перевод по выставленому счету
(поступление происходит в течении суток)

  • Доставка по Московской области — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 500 рублей до 5-ти км. от МКАД.
— 40 рублей за 1 км. от МКАД + 300 рублей в пределах МКАД, осуществляется в зависимости от суммы заказа.
— с 10.00 до 18.00 по рабочим дням РФ.

Оплата:

— наличными при получении.
— банковский перевод по выставленому счету
(поступление происходит в течении суток)

  • Доставка в города Московской области Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Курьерской Службы при получении.

  • Отправка в города России Курьерской Службой — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— Доставка до терминала Курьерской службы в г. Москва — Бесплатно.
— Все услуги Курьерской службы оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Курьерской Службы при получении.

  • Отправка в города РФ Транспортной Компанией — подробнее.

— Минимальная сумма заказа составляет — 1000 рублей.
— 300 рублей доставка до терминала Транспортной Компании в г.Москве.
— Все услуги Транспортной Компании оплачиваются покупателем.
— Предоплата заказа банковским переводом по счету, оплата услуг Транспортной Компании при получении.

Источник

Ограничители тока: схемы

Плавкие предохранители являются одноразовыми и требуют обязательной замены в случае их выхода из строя при скачках напряжения. Каждый из них рассчитан на определенный ток, однако при отсутствии подходящего элемента, ставится наиболее близкий по значению. Подобные действия оказывают негативное влияние на работу аппаратуры и снижают ее надежность. Поэтому в современных схемах используются ограничители тока, представляющие собой электронные предохранители. Эти приборы обеспечивают автоматическую защиту и существенно повышают быстродействие устройств.

Эффективность ограничителей тока

Плавкие предохранители использовались практически во всех схемах в течение длительного времени. Они часто выходили из строя и требовали ручной замены. При их отсутствии практиковалось использование самодельных устройств в виде различных перемычек, очень ненадежных и опасных во всех отношениях.

На смену этим простейшим элементам пришли электронные предохранители, исполняющие роль ограничителей тока. По своему действию они разделяются на две основные категории. Первая группа осуществляет восстановление питающей цепи после того как устранены причины аварии. Работа приборов второй группы происходит только с участием специалистов. Кроме того, существуют устройства пассивной защиты, сигнализирующие с помощью звука или света о возникновении опасной ситуации.

Ограничители тока: схемы

В радиоэлектронных устройствах защита от токовых перегрузок осуществляется с использованием резистивных или полупроводниковых датчиков тока, последовательно включаемых в цепь. Если напряжение падает ниже нормативного уровня, происходит срабатывание защитного устройства, отключающего аппаратуру от питающей сети. Данный способ защиты предполагает возможность изменения величины тока, при котором наступает срабатывание защиты.

Хорошую и эффективную защиту обеспечивает ограниченная величина предельного тока, проходящего через нагрузку. Заданный уровень не может быть превышен даже при наличии в цепи короткого замыкания. Ограничение предельного тока выполняется с помощью специальных устройств – генераторов стабильного тока.

Схемы электронных предохранителей

На представленных схемах отображаются наиболее простые автоматические защитные средства от токовых перегрузок. В основе устройства этих приборов лежат полевые транзисторы, обладающие начальным током, который не может быть превышен. Необходимая величина тока задается путем подбора определенного транзистора.

На схеме 1 используется элемент марки КП302А, указывающий на максимальное значение тока 30-50 мА. Для того чтобы повысить это значение, необходимо включить параллельно сразу несколько транзисторов.

Схема 2 работает с использованием обычных биполярных транзисторов с минимальным коэффициентом передачи тока 80-100. Путь входного напряжения начинается в резисторе R1, далее проходит через транзистор VT1, открывая его. Режим насыщения транзистора способствует уходу большей части напряжения к выходу. Если ток не превышает пороговое значение, в этом случае транзистор VT2 остается закрытым и светодиод HL1 светиться не будет. В схеме 2 резистор R3 является датчиком тока.

В случае падения напряжения транзистор VT1 закроется, ограничивая, таким образом, прохождение тока через нагрузку. Элемент VT2, наоборот, будет открыт, с одновременным включением светодиода. Номиналы элементов, указанных на схеме 2, соответствуют току короткого замыкания с напряжением 0,7 вольт, сопротивлением 3,6 Ом и силой тока 0,2 – 0,23 ампера.

На схеме 3 в электронном предохранителе в качестве ключа используется полевой транзистор VT1 повышенной мощности. Срабатывание защиты происходит при токе, зависящем от соотношения резистивных элементов. Важную роль играет величина сопротивления датчика тока, последовательно включаемого в цепь вместе с полевым транзистором. После того как защита сработала, повторное подключение нагрузки происходит путем нажатия кнопки SA1.

Ограничители тока – стабилизаторы

Стабилизаторы считаются одними из наиболее эффективных ограничителей тока. Например, с помощью устройства на схеме 1 возможно получение на выходе стабильного напряжения, с возможностью регулировки в пределах от 0 до 17 вольт.

От коротких замыканий и превышения тока применяются специальные элементы в виде тиристора VS1 и датчика тока на резисторе R2. Когда в нагрузке увеличивается ток, происходит включение тиристора с одновременным шунтированием цепи управленияVT1. После этого значение выходного напряжения становится равным нулю. Срабатывание защиты подтверждается включением светодиода.

После устранения неисправности повторный запуск стабилизатора происходит путем нажатия на кнопку SB1 и последующей разблокировки тиристора. Существуют ограничители тока, оборудованные защитой и звуковыми индикаторами перегрузок. Для управления генератором звуковой частоты используется специальный ключ на транзисторе.

Ограничитель импульсных перенапряжений

Предохранитель электрический – типы и разновидности

Источник



Простые электронные ограничители тока

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

Рисунок 1. Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

Рисунок 2. Принципиальная схема преобразованного
ограничителя тока.

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

Рисунок 3. Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

Но характерно, что часть напряжения на датчике в диапазоне от 0 до 0.55 В можно считать «лишней», поскольку в этом интервале VT2 практически не «чувствует» его, а по настоящему «рабочим» для него будет только интервал 0.55 — 0.6 В. Сдвинув же нижнюю границу чувствительности усилителя, визуально составляющую 0.55 В, к нулю, можно будет решить проблему снижения значения RS.

Технически этого результата можно достичь, например, вводом в цепь между базой VT2 и правым выводом RS отдельного вспомогательного источника напряжением 0.55 В. Но удобнее сформировать его применением делителя из двух резисторов, включенных между общим проводом и эмиттером транзистора VT1 (резисторы R2, R3, Рисунок 4). И его параметры должны обеспечивать падение напряжения на R2, равное 0.55 В. Для меньшей зависимости этой величины от входного тока транзистора ток этого делителя желательно выдерживать в пределах 0.5 — 1 мА. При этих условиях уже незначительное напряжение на RS переведет транзистор VT2 в активный режим начала ограничения, а полное ограничение тока произойдет при падения напряжения на RS всего лишь немногим более 0.05 В. Понятно, что изменением этих резисторов можно будет изменять порог ограничения тока. И это будет удобнее, чем подбирать величину RS.

Рисунок 4. Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

Основные результаты испытаний, как следует из представленных графиков (Рисунок 5), сводятся к следующему. Как и ранее, ток короткого замыкания устройства составляет 0.5 А. Точнее, реально при указанных значениях резисторов R2, R3, он составил 0.48 А, но это значение было скорректировано включением последовательно с R3 дополнительного переменного резистора. Что касается максимального значения падения напряжения на датчике RS, то оно упало пропорционально уменьшению величины установленного RS и составило всего около 0.1 В. График падения напряжения на регулирующем транзисторе, по сравнению с аналогичным параметром предыдущей схемы, в общем, сохранил свои черты, хотя и несколько изменился. Так, например, следует обратить внимание на то, что в этот раз область резко нелинейного роста падения напряжения на проходном транзисторе сместилась в диапазон 0.4 — 0.5 А, а в остальной – растет практически линейно. Из этого следует, что определенный резерв по снижению падения напряжения на датчике тока RS еще есть.

Рисунок 5. Зависимость падения напряжения на RS и
проходном транзисторе VT1.

Как уже отмечалось, незначительная коррекция тока ограничения в этой конструкции была проведена изменением сопротивления R3, но когда требуется его значительное изменение, удобнее пользоваться R2. При расчете его величины целесообразно предварительно задаться величиной максимального падения напряжения VSM на датчике тока RS в режиме ограничения. В принципе, это значение может быть любым из интервала от 0 до 0.6 В. Но нужно иметь в виду, что с его уменьшением ухудшается температурная стабильность предложенного решения. Так при VSM = 0.6 В температурный коэффициент зависимости изменения предела ограничения тока в области комнатных температур не превышает значения 0.2% на градус, а при VSM = 0.1 В этот показатель возрастает уже до 1.5% . Эта величина в ряде случаев может оказаться еще приемлемой, и ее условно можно принять за нижнюю границу интервала допустимых значений VSM, верхняя же будет обусловлена максимальным падением напряжения на базе транзистора VT2 в режиме ограничения тока. Если для расчета выбрать VSM равным 0.15 В, то из этого условия при заданном токе ограничения IM, например, 1.5 А, определится величина

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

из которого следует, что

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

Источник

Ограничители мощности

Найдено в категориях:

Ограничитель мощности ОМ-630-2 (EA03.001.009)

  • Код товара 3793506
  • Артикул EA03.001.009
  • Производитель Евроавтоматика/OM

Устройство защиты многофункциональное УЗМ-3-63К AC230В/AC400В УХЛ4 (4640016939237)

  • Код товара 6456468
  • Артикул 4640016939237
  • Производитель Меандр

Сделано
в России

Ограничитель мощности ОМ-110 однофазный (3425604110-01)

  • Код товара 7254496
  • Артикул 3425604110-01
  • Производитель Новатек-Электро

Сделано
в России

Устройство защиты УЗМ-50Ц УХЛ4 (4680019911854)

  • Код товара 7436398
  • Артикул 4680019911854
  • Производитель Меандр

Сделано
в России

Ограничитель мощности ОМ-310 трехфазный

  • Код товара 173057
  • Артикул 3425604310
  • Производитель Новатек-Электро

Сделано
в России

Ограничитель мощности ОМ-630 (EA03.001.007)

  • Код товара 5937751
  • Артикул EA03.001.007
  • Производитель Евроавтоматика/OM

Устройство защиты многофункциональное УЗМ-16 16А Uв-231/286В Uн-154/209В 10сек/6мин

  • Код товара 4795438
  • Артикул 4640016931910
  • Производитель Меандр

Сделано
в России

Реле мощности РМ11-18-1 УХЛ4,50ГЦ,110В,п.п., 230110031.01 (230110031)

  • Код товара 9681760
  • Артикул 230110031.01
  • Производитель ЧЭАЗ

Сделано
в России

РМ-12-18-1 5А/220 УХЛ4 п.п. РЕЛЕ МОЩНОСТИ 230120041.01 (230120041.01)

  • Код товара 620199
  • Артикул 230120041.01
  • Производитель ЧЭАЗ

Сделано
в России

РСМ-13-18-2812 УХЛ4 п.п. РЕЛЕ 230133061.01 (230133061)

  • Код товара 9691995
  • Артикул 230133061.01
  • Производитель ЧЭАЗ

Сделано
в России

Счетчик времени наработки CLG-13T/230 от Евроавтоматика F&F в ассортименте ЭТМ.

Счетчик времени работы служит для подсчета количества времени работы.

Новинка в линейке доступных источников питания Mollusk от Бастион!

Бюджетные не бесперебойные источники питания 12 В — Mollusk VR и VRK предназначены для организации бюджетного видеонаблюдения. Источники защищены от перегрузки и короткого замыкания на выходе.

Источник

Читайте также:  Структурная схема источника питания постоянного тока

Выключатель провод счетчик © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.