Меню

При каком условии ток гальванометра равен нулю i1 i3

ОПРЕДЕЛЕНИЕ СОПРОТИВЛЕНИЯ И ЧУВСТВИТЕЛЬНОСТИ ГАЛЬВАНОМЕТРА МАГНИТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ

Теория метода измерений. Отклонение стрелки в приборах магнитоэлектрической системы пропорционально проходящему току: I=Ci N, где N — число делений, соответствующее отклонению стрелка при силе тока I ; Ci= — коэффициент пропорциональности, являющийся постоянной прибора по току, или ценой деления прибора. Численно эта величина равна силе тока, вызывающего отклонение стрелки прибора на одно деление шкалы. Величина, обратная постоянной прибора по току, т.е. , называется чувствительностью прибора к току и равна числу делений шкалы, на которое отклоняется стрелка прибора при единичном значении силы тока. Для определения внутреннего сопротивления RG и чувствительности гальванометра к току Si воспользуемся схемой, представленной на рис.8. где G — гальванометр; V — вольтметр; — магазины сопротивлений, Е — источник тока, К — выключатель (кнопка). Используя первое правило Кирхгофа для узла В, можно написать

Согласно второму правилу Кирхгофа для контура AGBA имеем

для контура AEBGA — УR+УG ( )=E (3)

Сопротивлением r источника тока можно пренебречь, поэтому величину ЭДС источника Е можно заменить показанием вольтметра V (Е=V).Решение системы трех уравнений (1)-(3) относительно УG дает следующее выражение для силы тока. протекающего через галь­ванометр:

УG= .

Замена сопротивлений и R на и R’ дает величину тока У ’’ G :

Сопротивления R’, и можно подобрать таким образом, что отклонение стрелки при этом будет таким же, что и при и R и =0 , т.е, = У ’’ G . Решая это уравнение относительно RG .найдем:

Порядок выполнения работы.

1 С помощью магазинов сопротивления подбирают R и при таким образом, чтобы при кратковременном замыкании цепи получилось достаточное (не менее чем на половину шкалы) отклонение стрелки гальванометра G . ‘

Примечание. Целесообразно R выбрать в пределах 400-5000 Ом. Сопротивления подбирают. начиная с .единиц и десятков Ом.

2. Не меняя R и , вводят сопротивление r , чтобы отклонение стрелки гальванометра уменьшилось вдвое.

3. Увеличивают сопротивление до так, чтобы отклонение стало прежним. Так как R не изменилось (R=R ’ ), то формула (4) для сопротивления гальванометра упростится и примет вид

I. Подбирают, как и в первом случае, такие R и , при r=, .чтобы было достаточное отклонение стрелки гальванометра N .

Примечание. Целесообразно сопротивления R и оставить прежними.

2. Не изменяя R и , вводят r, чтобы отклонение стрелки гальванометра уменьшилось вдвое.

3. Уменьшают сопротивление R до R ’ так. чтобы отклонение стало прежним.

При втором способе измерений сопротивление не изменилось, т.е. .

Формула (4) для сопротивления гальванометра принимает следующий вид:

Сопротивление гальванометра вычисляют дважды, по формулам (5) и (6), За результат измерений принимают среднее значение. Чувствительность гальванометра к току вычисляют по формуле

где N — число делений (самых малых), на которые отклоняется стрелка прибора при r= ; u — показания вольтметра.

Постоянную прибора Сi. по току следует вычислять как величину, обратную чувствительности прибора к току, т.е. Сi =1/Si

Результаты измерений и вычислений занести в табл.2.

Т а б л и ц а 2

Способы R,Ом ρ, м r, Ом R’,Ом Ρ’,Ом RG,Ом RGср.,Ом U, В N,дел. Si дел/А Сi А/дел
Первый
Второй

Контрольные вопросы

1. Классификация приборов. Условные обозначения на шкалах электроизмерительных приборов.

2. Чувствительность к току и постоянная прибора по току.

3. Щунт и добавочное сопротивление.

4. Оценка погрешностей электрических измерений.

5. Устройство и принцип действия приборов магнитоэлектрической и электромагнитной систем.

6. Правила Кирхгофа. ,

7. Определить для гальванометра, который используется в работе, Сi по шкале прибора. Полученный результат сравнить с результатом, полученным экспериментально. Определить абсолютную и относительную ошибки измерений.

Источник

При каком условии ток гальванометра равен нулю i1 i3

Гальванометр — что измеряет и как работает

Дата распечатки 27.04.2021 13:20

Что такое гальванометр

Гальванометр

Гальванометр – это прибор для измерения параметров электроцепи, точнее – минимальных значений I, R и количества электричества (при известной постоянной прибора). Чтобы выяснить, какое действие I используется в гальванометре, нужно остановиться на его комплектации.

Когда нужно либо обнаружить, либо замерить величину I крайне небольших значений, применяют гальванометр, обладающий высокой степенью чувствительности. Помимо прямого измерения, он реагирует присутствие или отсутствие I или U на определенном участке цепи.

Принцип работы гальванометра

Принцип работы прибора основан на преобразовании замеряемого I в механическое движение стрелки, которая и показывает присутствие или отсутствие данного параметра.

На передней панели может отсутствовать так называемая шкала делений. В такой ситуации он используется для визуального отображения наличия или отсутствия тока. Именно потому данные устройства часто используют в качестве нуль-индикатора.

Первый гальванометр

Самый первые приборы были созданы почти два века назад Иоанном Швайггером.

Они представляли собой стрелку, выполненную из магнитного материала (часть от компаса), которая висела на тонкой нити и помещалась в прямоугольную рамку, позднее замененную на катушку с намотанным электрическим проводом. При подаче напряжения U на провод рамки происходило отклонение стрелки. При снятии U она возвращалась в свое исходное положение, совместимое с меридианом места установки всей конструкции.

Подобное устройство изначально получило название «мультипликатор», а впоследствии было признано первым гальванометром (или гальваноскопом).

Большинство современных приборов являются магнитоэлектрическими приборами, конструкция которых практически не отличается от устройства, изобретенного Швайггером. В своей основе они содержат три элемента:

  • Рамку с проводом тонкой намотки, удерживаемой специальной пружиной в точке «ноль» (катушка) и установленной на оси в магнитном поле.
  • Магнит (постоянный).
  • Шкалу (с градуировкой или без).
  • Указатель, механически соединенный с катушкой (образует 1 ось вращения).

Устройство гальванометра

Все типы имеют практически одинаковый принцип работы, а именно:

  • На катушку подается некоторое значение I.
  • За счет прохождения I вокруг нее наводится электромагнитное поле, вступающее во взаимодействие с полем постоянного магнита.
  • Вызванная взаимодействием полей сила стремится повернуть катушку и установить ее ровно между полюсами магнита.
  • Поскольку облегченный указатель механически связан с катушкой, вращение последней также приводит к его перемещению.
  • Рассчитав пропорции I, на шкалу наносится градуировка, соответствующая отклонению указателя на то или иное значение I.

Как указывалось выше, шкала либо выполняется без градуировки, либо с условно нанесенными делениями. В таких случаях гальванометр используется как нуль-индикатор.

Типовые конструкции

Все гальванометры по своим конструктивным особенностям могут подразделяться на два основных типа:

  • Переносные, используемые для цепей DC. Включают в себя рамку (подвижную), крепится на растяжках, шкалу, указатель (механический или световой).
  • Стационарные (зеркальные). Эти приборы не подлежат переноске и требуют в обязательном порядке выравнивания по уровню.
Читайте также:  Как взаимодействует магнит с кольцом по которому течет ток

Особенности устройства стационарного гальванометра

Схема устройства стационарного гальванометра

Если в переносных подвижная рамка фиксируется при помощи растяжек, то в приборах стационарного типа она закреплена на подвесе.

1 – рамка с обмоткой.
2 – подвес.
3 – зеркало.
4 – безмоментная нить.

При подключении стационарного устройства к отрезку электрической цепи с протекающим током, рамка приходит в движение и начинает поворачиваться. Для того чтобы зафиксировать и измерить данный угол поворота, используется зеркало, на которое посредством специальной лампы подается световой луч.

Основные характеристики гальванометров

Несмотря на простоту устройства подобных приборов, они также имеют основные характеристики и опции, определяющие их действие и чувствительность.

  • Одним из основных параметром устройства является постоянная. Ее значение определяется имеющейся длиной между шкалой и зеркалом и считается по стандартному отрезку протяженностью 1 метр. Для переносных данная величина считается ценой деления нанесенной шкалы. Составляет для современных приборов: стационарные — 10-11 А-м/мм, переносные приборы — 10-8 — 10-9 А/дел. Для всех видов приборов допускается погрешность в ±10%.
  • Постоянство «нуля» указателя (невозвращение стрелки к точке «ноль» при перемещении от крайнего положения, обозначенного на шкале). По данному параметру они различаются по разрядам постоянства. Данный показатель, имеющий числовое значение, в обязательном порядке указывается на шкале и наносится в виде ромбовидного штампа.
  • Наличие магнитного шунта. Его положение возможно изменять посредством поворота внешней ручки, что приводит к изменению: магнитной индукции в зазоре и постоянной гальванометра (по I в три раза). Таким образом, во всей технической документации, а также в паспорте прибора всегда указываются значения постоянной при 2 положениях шунта: в выведенном состоянии, в введенном состоянии.
  • Наличие корректора. Посредством его можно осуществлять перемещение стрелки (указателя) из одного крайнего состояния в другое.
  • Наличие арретира. Все статические устройства с подвесом оснащаются им в обязательном порядке, так как он позволяет жестко зафиксировать подвижную часть устройства. Это помогает предотвратить его повреждение при перемещении.
  • Наличие электростатического экранирования. Устанавливается в целях защиты прибора от I утечки.

Поскольку в них присутствует подвижная составляющая, ее движение и колебание пропорциональны успокоению, которое можно регулировать посредством подбора внешнего R. В паспорте изделия всегда указывается максимально допустимое внешнее R (критическое). На практике реальное R стараются подобрать как можно ближе к R критическому по значению. Это исключает возможность возникновения колебаний указателя вокруг положения равновесия.

Виды существующих гальванометров

Все имеющиеся приборы можно разделить на несколько основных видов в зависимости от их конструктивного исполнения.

Магнитоэлектрический

Устройство магнитоэлектрического гальванометра

Как уже упоминалось выше, по конструктивному исполнению он представляет собой рамку прямоугольной формы с намоткой тонким проводом, помещенную в поле действия магнита (постоянного).

В роли удерживающего устройства используется пружина, которая достаточно жестко фиксирует своеобразную катушку (рамку) в нейтральном (нулевом) положении.

При подаче напряжения через провод начинает протекать I, в результате чего происходит отклонение рамки на фиксированный угол, определяющийся следующими параметрами:

  • Значения I.
  • Индукции магнитного поля.
  • Коэффициента жесткости (пружины).

По отклонению указывающего элемента и определяют значение протекающего I. Данные механизмы достаточно популярны, так как отличаются большим коэффициентом чувствительности.

Электромагнитный

Считаясь наиболее простым по своей конструкции среди аналогичных, электромагнитный прибор включает:

  • Катушку (неподвижную).
  • Сердечник (подвижный).

При подаче I на провод катушки сердечник начинает поворачиваться или втягиваться в нее и, соответственно, сдвигает указатель на шкале.

Подобный вид активно используется для измерения малых величин I AC, однако его погрешность достаточно велика. Это связано с нелинейностью шкалы, что приводит к значительным трудностям при его градуировке.

Тангенциальный

Тангенциальный гальванометр

Основным устройством, используемым в данном типе, является обычный компас.

Благодаря ему прибор сравнивает два вида поля (магнитных):

  • Земли.
  • наведенное протекающим I.

Сам гальванометр работает по принципу тангенциального закона магнетизма (угол наклона стрелки магнита (тангенс) пропорционален отношению магнитных полей, направленных под углом 90 друг к другу).

В нем также имеется катушка с медной обмоткой, выполненная в виде рамки. При подаче I рамка, которая располагается строго вертикально, начинает проворачиваться вокруг своей центральной оси.

В самом центре на градуированной шкале расположен компас, на стрелке которого закреплен алюминиевый указатель, при этом он должен совпадать с плоскостью обмотки. При подаче электрического I он наводит магнитное поле на оси соленоида, располагающееся строго перпендикулярно магнитному полю Земли. Под действием двух полей указатель компаса начинает двигаться и поворачиваться на угол, который и равен тангенсу соотношения поля Земли и наведенного I. В пропорции этого отклонения и градуируется шкала.

Электродинамический

В приборе имеются катушки, выполняющие одновременно роль как подвижных, так и статических элементов.

Принцип его действия базируется на воздействии стального магнита на проводник с I. Если тонкий натянутый провод расположить вертикально, а вблизи его середины разместить стальной магнит, то при подаче электрического тока на проводник будет наблюдаться его отклонение даже при незначительной величине I.

На основании подобного закона и были созданы так называемые струнные устройства, которые в настоящее время нашли широкое применение в лабораторной технике.

Зеркальный

Принцип работы зеркального гальванометра

Относится к наиболее чувствительным, точным и быстрым из всех представленных видов приборов.

Состоит из зеркала, на которое подается световой луч. Само измерение производится за счет угла поворота рамки с намотанной на нее обмоткой. С учетом того, что поворот рамки достаточно мал, посредством оптического эффекта, создаваемого световым лучом, можно получить отражение от зеркала падающего луча на специальную градуированную шкалу.

Если при подаче I рамка разворачивается на угол, сам луч уже образует угол 2, а световое пятно смещается на определенное количество делений (на шкале). То есть, прибор настраивается так, что угол поворота самой рамки оказывается прямо пропорциональным числу делений.

Вибрационный

Принцип работы вибрационного гальванометра

Данное устройство отличается малыми габаритами и применяется, как правило, в качестве нуль-индикатора. Подобные типы бывают двух видов:

  • Петлевые.
  • Рамочные.

Все они оснащены петлей или рамкой, находящейся в сильном магнитном поле и настраиваются посредством натяжения удерживающей пружины. Отличительной особенностью данных устройств является очень высокая чувствительность, позволяющая измерять минимальные значения I.

Тепловой

Принцип работы теплового гальванометра

Включает в себя два основных элемента:

  • Проводника, на который подается I.
  • Рычажной системы.
Читайте также:  Метод двух узлов для источников тока

При подаче электрического тока за счет своего материала проводник начинает удлиняться, а рычажная система преобразует изменение в движение указателя, с которым она связана механически.

Апериодический

Данный вид прибора отличает то, что указатель на шкале все время возвращается в свое первоначальное, исходное положения после каждого проведения измерений без каких-либо колебаний.

Баллистический

Баллистический гальванометр

Чтобы измерить количество электричества (потокосцепления) в импульсах I, применяют баллистические гальванометры.

Отличительной особенностью в них является то, что подвижная часть устройства имеют больший момент инерции. Это означает, что время импульса I должно быть в разы меньше, чем Т колебаний рамки.

Применение гальванометров

Гальванометр применяется не только как самостоятельный прибор, показывающий малые значения, I, U или выполняющего роль нуль-индикатора, но и также как основной блок многих других измерительных приборов. Ниже будет подробно рассказано о каждом из таких вариантов использования.

1. Как амперметр или вольтметр, а именно:

  • подключение сопротивления (шунтирующего) в параллель с устройством позволяет измерять ток (амперметр);
  • включение R (добавочного) последовательно к устройству дает возможность измерять напряжение (вольтметр).

Таким образом, даже при отсутствии подключенного сопротивления прибор может выполнять как функцию амперметра, так и вольтметра в зависимости от подключения его к интересующему участку цепи.

2. Как термометр или экспонометр:

  • при подключении фотодиода используется как экспонометр;
  • при соединении с датчиком температуры (термоэлементом) будет выполнять функции своеобразного термометра.

3. Как измеритель заряда.

Для данной цели применяют баллистический гальванометр. Он позволяет измерить одиночный импульс заряда, так как после его протекания через прибор происходит резкий отброс внутренней рамки.

4. Как индикатор нуля.

При имеющемся положении стрелки на «нуле» на градуированной шкале, устройство применяется в качестве нуль-индикатора и показывает отсутствие электрического параметра при подключении к участку цепи.

5. Для записи различных сигналов в осциллографе.

За счет своего конструктивного исполнения гальванометр в осциллографе подключается напрямую к пишущему устройству (писчику). При подаче какого-либо импульса прибор реагирует на него и приводит в движение писчик, которые отображает определенные колебания на бумаге. При этом, в данных ситуациях используются различные типы приборов:

  • С большим усилием, способные передвигать писчик по бумаге.
  • С малым. Это подойдет для тех вариантов использования, когда требуется лишь периодический и кратковременный контакт пишущего устройства с бумагой.

6. Для осуществления оптической развертки в системах лазерной оптики (зеркальные).

В настоящее время аналоговые приборы постепенно уступают место современным устройствам, работающим на основе цифровых технологий. Единственными типами гальванометров, востребованными и сегодня, являются зеркальные устройства, которые применяются в качестве одной из составляющей установки в лазерной технологии, так как способны производить отклонение луча лазера.

Источник



Принцип работы гальванометра

ГАЛЬВАНОМЕТР

Гальванометр представляет собой высокочувствительный электроизмерительный прибор, назначение которого – измерение силы постоянного электрического тока очень небольшой величины. В отличие от микроамперметра, также измеряющего довольно малые токи, шкалу гальванометра, кроме единиц электрического тока, нередко градуируют и в других электрических величинах. Например, это могут быть милливольты или что-то другое. Часто разметка шкалы гальванометра может быть выполнена весьма условно.

Основными элементами конструкции гальванометров, используемых в настоящее время, являются:

● поворачивающаяся катушка (обмотка);

В магнитное поле постоянного магнита помещается обмотка с прикреплённой на ней указательной стрелкой. В исходном состоянии обмотка со стрелкой находятся в нулевом положении благодаря удерживающей пружине.

При прохождении постоянного тока через обмотку, в ней появляется магнитное поле, которое начинает взаимодействовать с полем магнита. В результате этого взаимодействия катушка вместе со стрелкой отклоняется, тем самым сигнализируя о протекании электрического тока.

При исчезновении электрического тока пропадает магнитное поле катушки и под действием возвратной пружины катушка со стрелкой возвращаются в начальное положение. Таким образом, становится визуально понятно, что электрический ток в цепи отсутствует.

ЗЕРКАЛЬНЫЙ ГАЛЬВАНОМЕТР МАГНИТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ

Устройство и принцип действия

Ввиду высокой чувствительности гальванометрa вращающий и противодействующий моменты в них ничтожно малы.

Поэтому при анализе работы гальванометра нельзя пренебрегать ни трением, ни тормозящими силами.

Измерение силы тока с помощью гальванометра основано на наблюдении угла поворота рамки.

Этот угол обычно мал, поэтому приходится прибегать к искусственным оптическим приемам его опреде­ления. Наиболее распространенным является метод зеркального отсчета (рис.6). Луч света от осветителя падает на зеркальце, связанное с рамкой через нить подвеса, и после отражения падает на прозрачную шкалу, образуя на ней световой «зайчик». При повороте рамки с зеркальцем на угол луч света поворачивается на угол 2 , а зайчик смещается на n делений шкалы. Величина угла поворота находится в зависимости от расстояния зеркальца до шкалы и от числа делений n отсчитанных по шкале смещения «зайчика». При малых углах поворота можно считать, что = , т.е. угол поворота рамки гальванометра прямо пропорционален числу делений шкалы n , на которое сместился ″зайчик″ Осветительное устройство, благодаря специальной оптической системе, обеспечивает изображение светового «зайчика» на шкале в виде светового круга или квадрата с линией в центре.

Уравнение движения рамки гальванометра. При отсутствии тока врамке плоскость ее витков расположена параллельно силовым линиям магнитного поля магнита. При протекании тока по ней возникает магнитное поле, вектор магнитной индукции которого перпендикулярен плоскости витков рамки. В результате взаимодействия: магнитных полей к рамке будет приложена пара сил Ампера, стремящаяся повернуть рамку перпендикулярно силовым линиям поля магнита. Вращающий момент пары сил равен

где N — число витков в рамке; в B- вектор магнитной идукции поля магнита; S — площадь витка рамка; I — сила тока в рамке. Вращающему моменту Мвр будет противодействовать упругий момент кручения Мупр , возникающий в нити подвеса при повороте рамки на угол по закону Гука:

Кроме этих двух моментов на рамку с током будет действовать тормозящий момент Мтр, , обусловленный электромагнитным торможением и сопротивлением воздуха. Сопротивлением воздуха можно пренебречь. Электромагнитное торможение является следствием того, что в рамке во время ее движения индуцируется ток с направлением, противоположным основному току в рамке. Вследствие взаимодействия индукционного тока и магнитного поля магнита возникает тормозящий момент Мтр , который определяется по формуле

Читайте также:  Как выбрать направление обхода тока в контуре электрической цепи

где =Iинд- величина индукционного тока, возникающего в цепи гальванометра, рамка которого замкнута на некоторое внешнее сопротивление Rвн ; Rg- сопротивление рамки гальванометра; угловая скорость ее вращения.

Коэффициент называется коэффициентом электромагнитного торможения. Поскольку величины B, S, N и RG постоянны для данного гальванометра, тормозящий момент Мтр определяется величиной сопротивления внешней цепи Rвн . Чем больше сопротивление внешней цепи гальванометра, тем меньше торможение рамки. Очевидно, наибольшее торможение будет при Rвн =0, то есть при коротком замыкании рамки. Это используется для так называемого демпфирования рамки, т.е. для быстрого ее успокоения. Наименьшее торможение будет при Rвн =∞, что соответствует разомкнутой цепи гальванометра. Разомкнув цепь гальванометра, можно заставить рамку совершать свободные колебания. Согласно второму закону механики для вращательного движения уравнение движения рамки гальванометра запишется в общем виде так:

как функцию времени, иначе говоря, установить характер движения рамки гальванометра, или характер режима его работы.

Параметры гальванометра

Динамическая постоянная: , где I — величина тока, протекающего через гальванометр; — расстояние между шкалой и зеркальцем прибора; n-смещение светового указателя по шкале, со­ответствующее силе тока I .

Динамическая постоянная прибора численно выражает величину тока, которая соответствует смещению светового указателя на I мм при расстоянии =1 м между. шкалой и зеркальцем прибора.

Чувствительность прибора к току: , т.е. величина, обратная динамической постоянной прибора. Численно она выражает смещение светового указателя прибора в делениях шкалы, соответствующее току единичной величины (1А, 1mА или 1 А), при рас­стоянии между шкалой и зеркальцем прибора = I м.

Критическое сопротивление прибора. Характер движения рамки гальванометра зависит от величины электромагнитного торможения, обусловленного взаимодействием индукционного тока, который возникает в обмотке рамки при ее движении, и магнитного поля магнита. Величина электромагнитного торможения зависит от полного сопротивления цели гальванометра R=RG+Rвн.

Существует такое значение полного сопротивления, которое называется критическим сопротивлением, а режим, соответствующий этому сопротивлению- критическим. При критическом режиме работы прибора рамка его подходит к положению равновесия, не переходя через него, за кратчайшее время.

Рис. 1. Рамочный гальванометр: 1 — постоянный магнит; 2 — рамка; 3 — стрелка-указатель; 4 — выводы рамки; 5 — шкала.

Рис. 2. Зеркальный гальванометр: 1 — осветитель (лампа); 2 — гальванометр; 3 — зеркальце; 4 — шкала.

Рис. 3. Вибрационный гальванометр: 1 — постоянный магнит; 2 — электромагнит; 3 — подвижная пластинка; 4 — бронзовая ленточка; 5 — обмотка для измеряемого тока; 6 — щель оптической системы; 7 — шкала.

Источник

Кто изобрел гальванометр, и каков его принцип действия

Гальванометр — это аналоговый измерительный прибор высокой чувствительности и точности, в основе которого лежит реакция на величину электромагнитного поля. Особенностью гальванических измерителей является, то что на его аналоговую шкалу возможно нанести деления для силы тока, напряжения, других условных физических величин или она может не иметь деления вообще.

История изобретения гальванометра

История создания гальванометра тесно связана с открытием понятия «электромагнитная индукция» и работой целой плеяды великих учёных мира, которые создавали новые варианты прибора и усовершенствовали его. Но о трёх эпохальных личностях в мире физики и гальванометров необходимо сказать отдельно:

  • Х.К. Эрстед;
  • Л. Гальвани;
  • М. Фарадей.

Датский учёный Ханс Кристиан Эрстед 15 февраля 1820 года, проводя эксперимент на лекции по электричеству, пропускал электрический ток через проводник, который лежал сверху корабельного компаса. В результате в момент включения цепи стрелка компаса отклонялась от своего начального положения. Проведя несколько аналогичных опытов с другими металлами и разным значением силы тока, Эрстед фактически доказал существование магнитного поля и электромагнитной индукции. А сам эксперимент (проводник, магнитная стрелка и источник питания) был заложен в основу первого гальванометра.

Луиджи Гальвани исследовал электричество, проходящее в живых и физически мёртвых организмах. Впоследствии на основе изучения «возвратного» удара были заложены условия для возникновения «гальванизма» — явления генерирования мышечных сокращений во время пропускания электрического тока. Это дало возможность создать и исследовать первые электрические индукции.

Майкл Фарадей в далёком 1831 году в конце августа (29), будучи в своей лаборатории, исследовал протекание электрического тока в проводнике и экспериментально доказал существование электромагнитной индукции, используя гальванометр для обнаружения этого явления. Которое перевернуло всю физику и фундаментальные законы природы, а именно наличие электромагнитного поля и индукции доказало существование нового вида материи.

Принцип работы системы гальванометра

Для работы обычного гальванометра необходимо наличие нескольких взаимосвязанных частей устройства:

  • катушка;
  • ось якоря (качелька);
  • стрелка-указатель;
  • источник питания;
  • провода.

Электрический ток проходит от источника питания по проводам в катушку. В ней генерируется магнитное поле, которое влияет на положения якоря, а соответственно и на отклонения стрелки.

Чем больше сила тока, тем больше магнитное поле: стрелка отклоняется дальше. В зависимости от направления протекания тока, стрелка может отклоняться влево или вправо.

Классификация гальванометров

За менее чем 200-летнюю историю было разработано огромное количество разнообразных гальванометров, которые отличаются размерами, принципом работы, шкалой измерений и многим другим.

Существует несколько групп гальванометров:

  • конструктивное оформление (переносные и зеркальные);
  • время действия тока (мгновенные, накопительные — кулонметры);
  • сфера использования (бытовые, исследовательские, промышленные и т.п.).

За принципом действия:

  • магнитоэлектрические, электромагнитные — вибрационные, баллистические;
  • тангенциальные — основаны на тангенциальном законе магнетизма;
  • тепловые — удлиняющийся (при нагреве от проходящего тока) проводник отклоняет стрелку;
  • зеркальные — падающий луч отклоняется от зеркала, которое поворачивается от действия магнитного поля.

фото гальванометра

Применение гальванометров

Трудно переоценить вклад от использования этого устройства в научно-исследовательскую деятельность. Но гальванометр нашёл своё применение в разных сферах:

  • высокочувствительные измерительные приборы (амперметры, вольтметры);
  • кино- и фотоиндустрия (экспонометры, датчики освещённости);
  • в электронике и электроэнергетике (нуль-индикаторы, измерители напряжений и токов);
  • детекция и рекордирование сигналов в разных сигнало-пишущих устройствах (осциллографы, осциллоскопы) и т. д.

Гальванометр — это целый класс высокоточного измерительного оборудования для исследования величины, проходящего через проводник, электрического тока и его физических характеристик.

Разновидность конструкций и принципов измерения позволяет использовать это устройство в самых распространённых бытовых и промышленных ситуациях, он является простым (можно сделать самостоятельно) и, в то же время незаменимым измерительным прибором для электроэнергетики, электротехники, электроники и остальных сфер деятельности человека связанных с электромагнитным полем.

Сохраните в закладки или поделитесь с друзьями

Источник