Меню

Расчет время срабатывания автоматического выключателя

Проверка времени срабатывания автомата в сетях 0,4кВ

В большинстве случаев защита кабельной линии выполняется автоматическими выключателями (или как их обычно называют, автоматами). Автоматический выключатель защищает кабельную линию двумя способами: от перегрузки (тепловая отсечка) и от короткого замыкания (электромагнитная отсечка).

И если перед вами стоит проблема правильного выбора автоматического выключателя, то выбрать его по перегрузке достаточно просто. Вы знаете (или можете посчитать) ток нагрузки. Номинал автоматического выключателя должен быть больше тока нагрузки. С этим всё просто.

С номиналом автомата разобрались, осталось выбрать его характеристику срабатывания. Всего бывает пять характеристик срабатывания автомата: B, C, D, K, Z. Автоматы с кривыми срабатывания K и Z очень редко используются, в основном применяются автоматы с характеристиками срабатывания B, C, D. Наиболее распространены автоматы с характеристикой C. Кривые срабатывания имеют схожую форму и отличаются только величиной электромагнитной отсечки или кратностью срабатывания. Кратность срабатывания — отношение величины аварийного тока, при котором происходит отключение автомата, к номинальному току автомата. Iк/Iном. Для автоматов с характеристикой B эта величина колеблется в пределах 3. 5. Для автоматов с характеристикой C — 5. 10. Для автоматов с характеристикой D — 10. 20.

Рассмотрим автомат с характеристикой C. Производитель гарантирует, что автомат сработает, если ток короткого замыкания превысит номинальный ток автомата в 10 раз. Но может сработать и при превышении в 5 раз. Это зависит от внешних условий: температуры окружающей среды; был ли автомат под нагрузкой, когда произошло КЗ, или был отключен и его включили на КЗ из «холодного» состояния.

Что будет, если величина тока короткого замыкания меньше отсечки? Автомат всё равно может отключиться, т.к. уже сработает тепловая отсечка. Но это произойдёт не мгновенно, а спустя некоторое время. Допустимое время срабатывания автомата строго регламентировано Правилами Устройства Электроустановок (ПУЭ) и зависит от величины фазного напряжения. Согласно требованиям п.1.7.79 наибольшее допустимое время защитного автоматического отключения при фазном напряжении 220/230 В для системы заземления TN не должно быть более 0,4 с.

Итак, необходимо проверить время срабатывания автоматического выключателя. Еще данный расчет называют «расчет петли фаза-нуль». Для примера выполним проверку автомата с номинальным током 16 А с характеристикой C. Автомат установлен в групповом щите. Щит питается от ГРЩ, а ГРЩ от трансформаторной подстанции.

Параметры трансформатора:
Номинальная мощность трансформатора Sн = 630 кВА,
Напряжение короткого замыкания трансформатора Uк% = 5,5%,
Потери короткого замыкания трансформатора Pк = 7,6 кВт.

Параметры питающей линии:
Гр.27 от ЩО 1.2 – 60 м кабель 1х[ВВГнг LS 3×2,5],
ЩО 1.2 от ГРЩ3 – 80 м кабель 1х[АВВГнг LS 5×50],
ГРЩ3 от ТП 1126 – 217 м кабель АВВГнг 2x (4×185).

Параметры выключателя:
Номинальный ток автоматического выключателя Iном = 16 А
Кратность отсечки K = 10.

Реактивное сопротивление трансформатора:

Xт = 13,628 мОм

Активное сопротивление трансформатора:

Rт = 3,064 мОм

Активное сопротивление кабеля:

Rк = 580,38 мОм

Реактивное сопротивление кабеля:

Xк = 17,36 мОм

Сопротивление энергосистемы:
Xc = 1,00 мОм

Суммарное реактивное сопротивление участка:
XΣ=Xc+Xт+Xк=31,984 мОм

Суммарное активное сопротивление участка:
RΣ=Rт+Rк=583,444 мОм

Полное суммарное сопротивление:

RΣ=583,444 мОм

Ток однофазного короткого замыкания:

IK1=190 А > IминК1 = 10×16 = 160 А
Следовательно, автоматический выключатель отключится мгновенно (сработает электромагнитная отсечка, время отключения.

Чтобы скачать пример расчета в Word, нажмите на кнопку: СКАЧАТЬ ПРИМЕР

Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:

Источник

Время-токовые характеристики автоматических выключателей в таблицах

У меня на блоге несколько статей про автоматические выключатели (АВ). Сегодня я хочу продолжить тему, которую рассмотрел в статье про Характеристики автоматических выключателей. Там я подробно рассмотрел время-токовые характеристики, характерные точки на кривой отключения, рассказал, когда сработает тепловой расцепитель, а когда – электромагнитный.

Поэтому не буду здесь об этом писать. Считаю, что эту статью читает подготовленный читатель. Если нет – перейдите по ссылке.

Почему время-токовые характеристики неудобны на практике

Но всё это – общая теория, без привязки к конкретным моделям автоматических выключателей. Ведь даже зная теорию, которая изложена в статьях и ГОСТ Р 50345-2010, невозможно слёту сказать, какой ток расцепления и нерасцепления будет у автомата, у которого на лицевой стороне написано “В10”. Нужно листать ГОСТ, гуглить, вспоминать, умножать, и так далее.

Читайте также:  Выключатель для бетономешалки kjd17

Вот как я об этом рассуждаю в статье про характеристики автоматов (ссылка в начале статьи):

Когда сработает автоматический выключатель? Рассуждения у время-токовой характеристики…

И мне, и моим читателям это неудобно. Поэтому я решил создать удобные на практике таблицы, приведенные ниже. В таблицах приведены данные, заранее посчитанные на основе номинального тока и типа тока мгновенного расцепления (В, С, D).

Фактически, таблицы токов, приведенные в статье, заменяют собой графики время-токовых характеристик. Они переводят теорию по расцепителям защитных автоматов из текстовой и графической форм в табличную. Думаю (уверен), что на практике моими таблицами для выбора автоматов и расчета токов в цепи будет пользоваться гораздо удобнее, чем графиками, на которых приведены данные безотносительно к конкретным номиналам.

Какие данные можно найти в таблицах?

Ниже я приведу список всех данных, которые есть в таблице. По каждому параметру я приведу его название, обозначение и краткое пояснение, что это такое. Если нужно официальное определение, оно есть в ГОСТ Р 50345-2010, который можно скачать в конце статьи.

Есть промышленные АВ с большой отключающей способностью в литом корпусе, которые выпускаются по ГОСТ Р 50030.2-99. Тут я их не рассматриваю. Немного пробежался по ним (окунулся в тему) в статье по первой ссылке.

Исходные данные:

  1. номинальный ток In – это максимальный ток, который данный автоматический выключатель может проводить неограниченное время при контрольной температуре +30°С. ГОСТ Р 50345-2010 (п. 5.2.2)
  2. тип тока мгновенного расцепления В, С, D – определяет диапазон токов срабатывания токов мгновенного (электромагнитного) расцепителя. ГОСТ Р 50345-2010 (п. 5.3.5)

Расчетные данные:

  1. Условный ток нерасцепления (неотключающий ток) Int – испытательный ток, равный 1,13 In. При действии тока 1,13 In в течение условного времени из холодного состояния АВ не должен отключиться. Условное время – не более 1 часа для In не более 63 А, и не более 2 часов для In более 63 А. ГОСТ Р 50345-2010 (п. 8.6.1). Кстати, этот ГОСТ распространяется на АВ с In не более 125 А.
  2. Условный ток расцепления It – испытательный ток, равный 1,45 In. При действии тока 1,45 In АВ сразу после испытания током 1,13 In должен выключиться в течение условного времени (менее 1 часа для In не более 63 A и менее 2 часов для In более 63 А). ГОСТ Р 50345-2010 (п. 8.6.1).
  3. Проверочный ток – испытательной ток, равный 2,55 In. При действии тока 2,55 In из холодного состояния АВ должен отключиться за время от 1 до 60 с (In не более 32 А) или за время от 1 до 120 с (In более 32 А). ГОСТ Р 50345-2010 (п.8.6.1, п.9.10.1.2)
  4. Нижний предел диапазона токов срабатывания электромагнитного расцепителя (В – 3 In, C – 5 In, D – 10 In). Время расцепления – не более 0,1 с. ГОСТ Р 50345-2010 (п.8.6.1). При этом токе ЭМ, вплоть до верхнего предела, расцепитель может сработать, но не обязан. Его “страхует” тепловой, по любому выключая автомат.
  5. Верхний предел диапазона токов срабатывания электромагнитного расцепителя (В – 5 In, C – 10 In, D – 20 In). Время расцепления – менее 0,1 с. ГОСТ Р 50345-2010 (п.8.6.1). Начиная с этих токов, ЭМ расцепитель должен выключать автомат.
  6. Мощность, которую сможет пропустить через себя однополюсный АВ при номинальном рабочем напряжении Ue = 230 В и номинальном токе In. Расчет по формуле: P = Ue In.
  7. Мощность, которую сможет пропустить через себя трехполюсный АВ при номинальном рабочем линейном напряжении Ue = 400 В и номинальном токе In (трехфазная сеть, нагрузка на номинале в звезде). Расчет по формуле: P = √3 Ue In.
  8. Мощность, которую сможет пропустить через себя трехполюсный АВ при номинальном рабочем линейном напряжении Ue = 400 В и номинальном токе In (трехфазная сеть, нагрузка на номинале в треугольнике). Расчет по формуле: P = 3 Ue In.
  9. Минимальное сечение медной токопроводящей жилы, которую может защитить однополюсный АВ, чтобы не допустить перегрева жилы выше +65°С. Для двухжильного кабеля, проложенного в воздухе (согласно ПУЭ, табл. 1.3.4, 1.3.6). Самый тяжелый случай. В конце статьи – интересное видео, там про нагрев кабеля и выбор автомата отлично сказано!
Читайте также:  Сенсорный выключатель для ночника

Таблицы токов автоматических выключателей на время-токовых характеристиках

Таблицы ниже – пояснения выше.

По просьбе читателей, уточняю, что все данные – при контрольной температуре +30°С.

Токи расцепления защитного автомата с характеристикой В. Контрольные точки на время-токовой характеристике для теплового и электромагнитного расцепителя.

Токи расцепления защитного автомата с характеристикой С. Контрольные точки на время-токовой характеристике для теплового и электромагнитного расцепителя.

Токи расцепления защитного автомата с характеристикой D. Контрольные точки на время-токовой характеристике для теплового и электромагнитного расцепителя.

Подробные таблицы, с мощностью нагрузки и допустимым сечением провода

То же самое, добавлены ещё колонки, пояснения выше.

Табличные данные для защитных автоматов с характеристикой В, включая нагрузку

Табличные данные для защитных автоматов с характеристикой С, включая нагрузку

Табличные данные для защитных автоматов с характеристикой D, включая нагрузку

Как обычно, все картинки у меня можно приблизить и скачать.

Также можно скачать ГОСТ (первоисточник), в котором есть все, как модно сейчас говорить, пруфы:

• ГОСТ Р 50345-2010 / ГОСТ Р 50345-2010 (МЭК 60898-1:2003) Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока. Настоящий стандарт распространяется на воздушные автоматические выключатели (далее — выключатели) для переменного тока для работы при частоте 50 или 60 Гц на номинальное напряжение (между фазами) не более 440 В, номинальный ток не более 125 А и номинальную отключающую способность не более 25000 А., pdf, 1.89 MB, скачан: 250 раз./

Ну а если кто-то сомневается и хочет проверить правильность моих расчетов, выкладываю файл Excel, в котором сделаны таблицы:

• Файл для расчета / Файл для расчета токов характерных точек на ВТХ АВ, xlsx, 21.99 kB, скачан: 271 раз./

Видео

Пока готовил статью, нашёл хорошее видео по поводу выбора автоматов для защиты кабеля. Убедительно доказывается, что на 2,5 мм2 нужно ставить АВ 16А, и что автомат нужен для защиты кабеля, а розетки и нагрузка – “по остаточному принципу”.

Всем хорошей осени, жду отзывов и вопросов в комментариях!

Может, я что-то упустил, и таблицы нужно скорректировать и дополнить?

Источник



Расчет времени срабатывания ВА88 с МР211

Самыми распространенными автоматическими выключателями являются автоматические выключатели с нерегулируемыми расцепителями. Однако, в некоторых случаях приходится применять автоматы с электронными регулируемыми расцепителями.

Я уже рассказывал про автоматы серии ВА-99С, а теперь рассмотрим автоматы ВА88 с электронным расцепителем МР211, т.к. недавно пришлось применить их в проекте и потратил немало времени на его изучение, вам тоже может пригодиться.

Автоматические выключатели серии ВА88

Стоит отметить, что техподдержка у ИЕК работает, однако, ответы их желают лучшего. Задаешь конкретный вопрос – отвечают абстрактно, одним предложением, а ты думай, что они имеют ввиду. Кстати, если говорить о техподдержке, то белорусские представители ДКС даже не считают нужным отвечать на письма, сообщения в VIBER, хотя на семинаре себя совсем по-другому ведут, уже 2 месяца жду от них ответ.

Читайте также:  Автоматический выключатель ап50 3мт 40а

Вернемся к автоматам ВА88 с расцепителем МР211.

Нужно понимать, что эти автоматы стоят в несколько раз дороже обычных и применяют их, если требуется четкое выполнение правил селективности.

Предвижу кучу комментариев, поэтому скажу, если вы используете автоматы с нерегулируемыми расцепителями, то выполнить полную селективность практически нереально так, чтобы потом ваш проект согласовали все заинтересованные организации.

Какие настройки имеет автомат ВА88 с МР211?

Уставки срабатывания электронного расцепителя МР211 устанавливаются потребителем на передней панели автоматических выключателей переключением DIP-переключателей согласно требований потребителя.

Панель электронного расцепителя MP211.

На рисунке а, б и в показаны настраиваемые параметры электронного расцепителя. На рисунке г изображена время-токовая характеристика выключателя.

Настройки расцепиеля МР211:

1 Уставка срабатывания защиты от перегрузки (рис. а).

Защита от перегрузки настраивается в соответствии со следующей формулой:

Ir=K× In,

где Ir – требуемый ток расцепителя;

In – номинальный ток автоматического выключателя.

К – коэффициент срабатывания защиты от 0,4 до 1,0. Возможна установка следующих значений коэффициента K: 0,4-0,5-0,6-0,7-0,8-0,9-0,95-1,0.

2 Уставка срабатывания защиты при коротком замыкании (рис. б).

Защита при коротком замыкании настраивается в соответствии с формулой:

Im=M× In.

где, M — коэффициент срабатывания защиты при коротком замыкании. Возможна установка следующих значений коэффициента M: OFF-1,5-2-4-6-8-10-12 (режим OFF позволяет отключить защиту при коротком замыкании).

3 Время задержки срабатывания защиты от перегрузки (рис. в).

Время tr задержки срабатывания защиты от перегрузки при I=6·Ir может иметь следующие значения: 3-6-12-18 с. Данный параметр определяет смещение наклонного участка время-токовой кривой вдоль оси времени, что позволяет изменять задержку времени срабатывания защиты при длительной перегрузке. Точкой привязки при расчетах прогнозируемого тока срабатывания защиты принимается ток, равный по величине шестикратному току Ir защиты при перегрузке.

На рисунке г приведена время-токовая характеристика срабатывания выключателя ВА88 с электронным расцепителем в зависимости от установки параметров K, M и tr.

Но, самое интересное, что величина задержки Т срабатывания защиты, может быть определена по следующей формуле:

где T – расчетное время срабатывания при прогнозируемой фактической величине тока перегрузки, с;

p – коэффициент кратности предполагаемого фактического тока перегрузки относительно номинального тока автоматического выключателя;

tr – время задержки срабатывания защиты, устанавливаемое DIP-переключателем на лицевой панели выключателя.

А теперь давайте на примере посчитаем время срабатывания автомата с МР211 для конкретного случая.

Пусть Ir=480А, Iкз=2120А. Требуемое время отключения – не более 5 с.

Выбираем ВА8840 с МР211, In=800А.

1 Сначала посчитаем по формуле.

Если выполнить обратный расчет ((6*0,6/р) 2 *3=5), то получим, что p=Iкз/In должно быть более 2,8 для Ir=480А.

Как я понимаю, при таком значении не важно, какая у вас уставка М, автомат в любом случае отключит за временя не более 5с. Если вы заметили, то в формуле не участвует коэффициент уставки М.

2 Определим время срабатывания по графику время-токовой характеристики.

Время-токовые характеристики срабатывания выключателей ВА88 с электронным расцепителем

Красная линия на графике приблизительно соответствует автомату ВА88 с Ir=480А при М=6. Именно так мне порекомендовал ИЕК установить кф. М.

Если провести линию 2,65In вертикально, то получим время около 5с, т.е. очень близкое к времени полученному первым методом. Возможно, связано с неточностью построения.

Исходя из этого я могу сделать вывод, что если время отключения получается более 5с, то коэффициент М нужно устанавливать ближайший слева от синей линии. В нашем случае это М=2.

Если у вас имеется опыт настройки автоматических выключателей ВА88 с расцепителем МР211, напишите свое мнение.

Источник