Меню

Расстояние тока в полупроводниках

Электрический ток в полупроводниках

Зависимость проводимости полупроводников от температуры и освещенности

Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.

При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

зависимость сопротивления полупроводников от температуры

При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).

Собственная проводимость полупроводников

В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.

В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.

В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.

Примесная проводимость полупроводников

При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.

При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.

При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.

Электронно-дырочный переход

В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой, называемый p-n-переходом. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Полупроводниковые приборы и их применение

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

прямой ток через диод

Идет значительный ток.

обратный ток через диод

Ток практически отсутствует.

вольт-амперная характеристика диода

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

полупроводниковый диод

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

транзистор

Интегральные схемы

На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.

интегральная схема

Полупроводники используются при создании:

фоторезисторов , которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;

термисторах , используемых для измерения температуры, в пожарной сигнализации, реле времени;

фотоэлементах , используемых в солнечных батареях;

фотодиодах , используемых для измерения интенсивности света;

фототранзисторах , используемых в различных датчиках;

светодиодах , используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.

Подведем итог

Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.

Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.

При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.

Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.

Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.

Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.

В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.

Источник

О том что такое полупроводник и как он работает

Полупроводниками (seicomnductor) называют вещества, которые по способности проводить электрический ток занимают промежуточное положение между металлами (проводниками) и диэлектриками (изоляторами).

К классу полупроводников принадлежат многие из известных веществ. Ими могут быть как химически чистые вещества, так и различные соединения и даже сплавы некоторых металлов. По структуре эти вещества могут быть кристаллическими или аморфными, однако, как правило, для изготовления полупроводниковых приборов используют вещества с кристаллической структурой. Исходным материалом наиболее часто служит германий Ge или кремний Si, а также арсенид галлия GaAs — полупроводник, являющийся химическим соединением.

При качественном анализе механизма проводимости полупроводников обычно используется плоскостной моделью кристаллической решетки.

О том что такое полупроводник и как он работает Полупроводник, Кремний, Германий, Электроника, Длиннопост

На (рис.39-а) показана модель решетки химически чистого полупроводника — германия, каждый атом которого имеет на внешней оболочке четыре валентных электрона. Например для атома I это электроны 1, 2, 3, 4. При образовании кристалла каждый валентный электрон в веществе начинает двигаться по орбите, окружающей не только свой атом, но и соседний. Таким образом, каждая соседняя пара атомов имеет общую пару электронов, движущихся по двум общим орбитам. Такая связь атомов называется ковалентной. В целом судя по представленной модели, каждый атом связан с соседними атомами восемью орбитами, по которым движутся четыре пары электронов. На (рис.39-а) эти связи изображены тонкими прямыми линиями. На примере для атома I и II общие электроны 1 и 5, а для атомов I и III — это электроны 2 и 9 и т.д.

Читайте также:  Трансформаторы тока для электроприборов

В химически чистых полупроводниках при температуре абсолютного нуля свободных носителей зарядов нет. С повышением температуры валентные электроны приобретают дополнительную тепловую энергию и некоторые из них (электроны с наибольшими скоростями хаотического теплового движения) могут, разорвать связь с атомами и стать свободными носителями зарядов. Атом, потерявший электрон, становится положительно заряженным ионом. Эти ионы не являются носителями зарядов, так как они жестко связаны межатомными силами.

При отрыве электрона от атома образуется так называемая дырка — разорванная валентная связь в атоме (рис.39-б). Дырке приписывается положительный заряд, равный по значению заряду электрона. Эта вакантная валентная связь может быть вновь заполнена электроном, оторванным от соседнего атома под действием электрического поля. При заполнении дырки электроном данный атом становится электрически нейтральным, а у соседнего атома, потерявший электрон, появляется дырка, которая, в свою очередь, также может быть заполнена электроном от следующего атома и т.д. Таким образом, процесс перехода электрона от нейтрального атома к соседнему атому с дыркой под влиянием положительной разности потенциалов можно представить как процесс перехода дырки от положительного иона к нейтральному атому, т.е. как будто условно-положительный заряд — дырка — движется в сторону, противоположную движению электрона.

Электропроводность, при которой электрон последовательно занимает дырку у рядом расположенного атома, т.е. в каждый момент времени в веществе преобладает «свободные» дырки, которые переходят от одного соседнего атома к другому, называется дырочной или электропроводностью p-типа (positive). Электропроводность, обусловленная движением свободных (избыточных) электронов между узлами кристаллической решетки, называется электронной или электропроводностью n-типа (negative).

Возникновение в полупроводнике свободных электронов и дырок при повышении температуры называется термогенерацией носителей зарядов, а процесс возвращения свободных электронов на место разорванной валентной связи — рекомбинацией носителей зарядов. При определенных условиях между этими двумя процессами устанавливается динамическое равновесие, т.е. концентрация дырок и электронов в заданном объеме становится постоянной, а их количество — одинаковым. Дырки и электроны в полупроводнике без примесей обеспечивают собственную электропроводность, которая складывается из электропроводности p-типа и n-типа. Последняя обычно преобладает, так как электроны более подвижны, чем дырки, оттого, что дырка может перемещаться только между соседними атомами. Концентрация носителей зарядов в чистых полупроводниках мала. Например, для германия при обычной температуре число свободных носителей зарядов составляет примерно 10-8 степени % от общего числа атомов (в металлах число свободных электронов примерно равно числу атомов). Поэтому удельная электропроводность полупроводников значительно меньше, чем у металлов. Появление дополнительных носителей зарядов в полупроводнике с повышением температуры и разрыв валентных связей приводят к уменьшению его сопротивления, а в металле с ростом температуры сопротивление обычно увеличивается. Уменьшение сопротивления полупроводника может быть вызвано также другими внешними факторами, например воздействие излучений. Но особенно сильно влияет на свойство полупроводников наличие примесей других веществ.

Как уже упоминалось выше, в полупроводниковых приборах практически не используются химически чистые полупроводники, а применяются главным образом полупроводники с примесями, добавление которых приводит к существенному увеличению числа носителей зарядов. Электропроводность таких полупроводников называется примесной.

Рассмотрим механизм образование зарядов, воспользовавшись снова плоскостной моделью кристаллической решетки. Если в четырехвалентный германий добавить пятивалентное вещество, например сурьму, то пятивалентный атом сурьмы четырьмя валентными электронами образует ковалентную связь с четырьмя соседними атомами германия, а пятый валентный электрон атома сурьмы остается «лишним» и может быть достаточно легко отделен от атома. Такие полупроводники обладают электропроводностью n-типа. Примеси, которые отдают исходному полупроводнику свои электроны, называют донорными.

Добавим в четырехвалентный германий трех валентный индий. В этом случае при образовании решетки трехвалентный атом индия для установления ковалентной связи с четырьмя соседними атомами германия оторвет один электрон от близлежащего атома германия. Атом индия приобретают отрицательный заряд, а на месте оторванного электрона возникает дырка. Такие примеси, добавление которых к полупроводнику приводит к появлению дырок, называют акцепторными (забирающими электроны), а полученный полупроводник с дырочной электропроводностью — полупроводником p-типа.

В примесных полупроводниках концентрация носителей зарядов всегда превышает (в 100 раз и более) концентрация носителей зарядов в исходного вещества. Поэтому удельное электрическое сопротивление примесного полупроводника всегда значительно меньше, чем исходного химически чистого. Однако даже в примесном полупроводнике число носителей зарядов намного меньше числа атомов; они составляют не более 10-4 степени % от общего числа атомов.

Носители зарядов, преобладающие в данном полупроводнике, называют основными; носители зарядов, концентрация которых в данном полупроводнике меньше концентрация основных носителей, называют неосновными. Для полупроводника n-типа основные носители заряда — электроны, а неосновные дырки; для полупроводника p-типа основные носители — дырки, неосновные — электроны.

Если полупроводники подключить к источнику тока, носители заряда, имеющиеся в нем, начинают перемещаться направленно: дырки — к отрицательному полюсу, электроны — к положительному, т.е. возникают электронный и дырочный дрейфовые токи, образующий общий ток через полупроводник (рис.40).

О том что такое полупроводник и как он работает Полупроводник, Кремний, Германий, Электроника, Длиннопост

Дырки перемещаются только в полупроводнике, причем только между соседними атомами. У положительного полюса дырка возникает за счет отрыва электрона от атома и ухода его во внешнюю цепь. Во внешней цепи ток образуется только за счет электронов проводимости. У отрицательного полюса дырка рекомбинирует с электроном, поступившим из внешней цепи.

Читайте также:  Как изменится сопротивление проводника если сила тока в нем увеличится в 3 раза

При подаче на полупроводник p-типа напряжения подавляющая часть тока образована дырками — основными носителями. В полупроводнике с электронной проводимостью ток образуется главным образом электронами. При смене полярности напряжения изменяется также направление тока.

Направленное движение носителей зарядов может вызываться не только электрическим полем, но и разной их концентрацией в объеме вещества. Процесс направленного движения носителей зарядов, вызванный их неравномерной концентрацией, носит название диффузии носителей зарядов, а соответствующий ток называют диффузионным в отличие от дрейфового тока.

Источник



Расстояние тока в полупроводниках

По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает (см. рис. 1.12.4). У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 1.13.1).

Такой ход зависимости ρ () показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок . Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией . Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: . Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью . Различают два типа примесной проводимости – электронную и дырочную .

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле . Такая проводимость называется электронной , а полупроводник, обладающий электронной проводимостью, называется полупроводником -типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Читайте также:  Получение водорода электрическим током

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником -типа . Основными носителями свободного заряда в полупроводниках -типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников — и -типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

Источник

Электрический ток в полупроводниках

Проводимость полупроводника

Главное свойство полупроводников, результатом которого является широчайшее их распространение в современной электронике, является возможность легкого управления проводимостью. Это дает возможность использовать полупроводники для усиления и преобразования самых разных электрических сигналов.

Изначально полупроводниковые приборы строились в основном на основе германия. В настоящее время самое широкое применение находит кремний.

Строение кристалла полупроводника

Для понимания природы проводимости полупроводника следует рассмотреть его атомное строение. Кремний – четырехвалентный элемент. В его кристалле каждый атом связан ковалентными связями с четырьмя соседями. Ковалентная химическая связь – это связь, при которой электроны двух атомов «обобществляются», и становятся общими. То есть каждая связь в кремнии содержит два «обобществленных» электрона.

Структура связей в кристалле кремния

Рис. 1. Структура связей в кристалле кремния.

Электронная проводимость

Чем выше температура кристалла, тем больше энергии имеют валентные электроны, и тем легче им переходить между соседними атомами. Удалившись от одного атома, он может начать двигаться по связи с другим атомом (там, где в это время другой электрон «освободит место»).

Дырочная проводимость

Заметим, что электрон, ставший свободным – покинул свой атом, в результате чего у атома образовался избыточный положительный заряд, «вакантное место» в одной из четырех связей. Такой атом называется «дыркой». Поскольку в ковалентных связях электроны могут переходить от связи к связи – образовавшееся «вакантное место» может быть заполнено электроном из соседнего атома, таким образом дырка образуется в этом соседнем атоме.

В отсутствие электрического поля дырки образуются и исчезают хаотично. Однако, если такое поле появляется, дырка будет заполняться электронами из соседних атомов в основном под действием этого поля. То есть, под действием поля дырка начинает движение – в полупроводнике возникает дырочная проводимость.

Таким образом, кратко электрический ток в полупроводниках можно представить в виде движения электронов и дырок.

Собственная и примесная проводимость

Собственная проводимость чистого полупроводника, как правило, невелика, существенно меньше, чем проводимость металлов. Для работы в электронных схемах это большой недостаток. Для увеличения проводимости в полупроводник вводят специальные примеси.

Атомы примеси подбираются так, чтобы они легко встраивались в кристаллическую структуру полупроводника, и при этом значительно влияли на его проводимость, несмотря на небольшое количество примеси. Такой результат можно получить, если валентность примеси будет немного отличаться (на единицу) от валентности вещества полупроводника.

Донорная и акцепторная проводимость

Валентность примеси может быть равна пяти (например, у мышьяка). В этом случае у каждого атома примеси кроме четырех электронов, участвующих в связи с соседними атомами кремния, будет один «лишний» электрон, который сможет легко покидать атом мышьяка, и двигаться в полупроводнике. Проводимость кристалла резко возрастает за счет появляющихся свободных электронов. Примесь, которая легко увеличивает число свободных электронов, называется донорной, а кристалл полупроводника с донорной примесью называется n-типом (от «negative»). Основными носителями в таком полупроводнике являются электроны.

Рис. 2. Электронная проводимость полупроводника.

Валентность примеси может быть равна трем (например, у индия). В этом случае у каждого атома примеси в четырех связях с соседними атомами кремния всегда будет одно «вакантное» место, которое будет легко заполняться электронами соседних атомов. Проводимость кристалла в этом случае также возрастает, за счет увеличенного числа дырок. Примесь, увеличивающая число дырок, называется акцепторной, а полупроводник с такой примесью называется полупроводником p-типа (от «positive»). Основными носителями в нем являются дырки.

Рис. 3. Дырочная проводимость полупроводника.

Изменяя концентрацию примесей, можно значительно менять как электронную, так и дырочную проводимость. Эта возможность широко используется в электронике.

Что мы узнали?

В полупроводниках существуют носители двух типов – свободные электроны, покинувшие атомы и атомы, в которых есть «вакантное» место для электрона (дырки). В проводниках бывает собственная и примесная проводимость. Если примесь легко отдает электроны, то она называется донорной, такой полупроводник имеет n-тип. Если примесь имеет недостаток электронов, она называется акцепторной, такой полупроводник имеет p-тип.

Источник