Меню

Резонанс токов при параллельном включении

РЕЗОНАНС ТОКОВ, ПАРАЛЛЕЛЬНЫЙ РЕЗОНАНС

Весь контур в целом является нагрузочным сопротивлением для генератора и поэтому генератор

включен последовательно, как это и бывает всегда в замкнутой цепи.

Условия получения резонанса токов такие же, как и для резонанса напряжений: f = f или xL = хC. Однако по своим свойствам резонанс токов во многом противоположен резонансу напряжений. В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе сопротивление контура между точками разветвления становится максимальным, а ток генератора будет минимальным. Полное (эквивалентное) сопротивление контура для генератора при резонансе токов Rэ можно подсчитать по любой из следующих формул

где L и С — в генри и фарадах, а Rэ, р и r — в омах.

Сопротивление Rэ, называемое резонансным сопротивлением, является чисто активным и поэтому при резонансе токов нет сдвига фаз между напряжением генератора и его током.

На (рис.1 б) для резонанса токов показано изменение полного сопротивления контура z и тока генератора I при изменении частоты генератора f.

В самом контуре при резонансе происходят сильные колебания и поэтому ток внутри контура во много раз больше, чем ток генератора. Токи в индуктивности и емкости IL и IС можно рассматривать как токи в ветвях или как ток незатухающих колебаний внутри контура, поддерживаемых генератором. По отношению к напряжению U ток в катушке отстает на 90°, а ток в емкости опережает это напряжение на 90°, т. е. друг относительно друга токи сдвинуты по фазе на 180°. Вследствие наличия активного сопротивления, сосредоточенного главным образом в катушке, токи IL, и IC в действительности имеют сдвиг фаз несколько меньше 180° и ток IL немного( меньше IC. Поэтому по первому закону Кирхгофа для точки разветвления можно написать

Чем меньше активное сопротивление в контуре, тем меньше разница между IC и IL, тем меньше ток генератора и тем больше сопротивление контура. Это вполне понятно. Ток, идущий от генератора, пополняет энергию в контуре, компенсируя потери ее в активном сопротивлении. При уменьшении активного сопротивления уменьшается потеря энергии в нем и генератор расходует меньше энергии на поддержание незатухающих колебаний.
Если бы контур был идеальным, то начавшиеся колебания продолжались бы непрерывно без затухания и не требовалось бы энергии от генератора на их поддержание. Ток генератора был бы равен нулю, а сопротивление контура — бесконечности.
Активная мощность, расходуемая генератором, может быть подсчитана как

или как мощность потерь в активном сопротивлении контура

где Iк — ток в контуре, равный IL или IC.

Для резонанса токов так же, как и для резонанса напряжений, характерно возникновение в контуре мощных колебаний при незначительной затрате мощности генератора.

На явление резонанса в параллельном контуре большое влияние оказывает внутреннее сопротивление Ri питающего генератора. Если это сопротивление мало, то напряжение на зажимах генератора, а следовательно, и на контуре незначительно отличается от эдс генератора и остается почти постоянным по амплитуде, несмотря на изменения тока при изменении частоты. Действительно, U = Е — IRi, но так как Ri величина малая, то потеря напряжения внутри генератора IRi также незначительна и U = Е.

Полное сопротивление цепи в этом случае приближенно равно только сопротивлению контура. При резонансе последнее сильно возрастает и ток генератора резко уменьшается. Кривая изменения тока на (рис.1 б) соответствует именно такому случаю.

Постоянство амплитуды напряжения на контуре также объясняет формула U = I * z. Для случая резонанса z велико, но I — величина малая, а если резонанса нет, то z уменьшается, но зато I увеличивается и произведение I*z остается примерно прежним.

Как видно, при малом Ri генератора параллельный контур не обладает резонансными свойствами в отношении напряжения: при резонансе напряжение на контуре почти не возрастает. Не будут заметно увеличиваться и токи IL И IС. Следовательно, при малом Ri генератора контур не имеет резонансных свойств и по отношению к токам в катушке и конденсаторе.

В радиотехнических схемах параллелыный контур обычно питается от генератора с большим внутренним сопротивлением, роль которого выполняет электронная лампа или полупроводниковый прибор. Если внутреннее сопротивление генератора значительно больше, чем сопротивление контура r, то параллельный контур приобретает резко выраженные резонансные свойства.

В этом случае полное сопротивление цепи приближенно равно одному Ri и почти неизменно при изменении частоты. Ток I, питающий контур, также почти постоянен по амплитуде:

Но тогда напряжение на контуре U = I * z при изменении частоты будет следовать за изменениями сопротивления контура z, т.е. при резонансе U резко увеличится. Соответственно возрастут токи IL и IC. Таким образом, при большом Ri генератора кривая изменения z (рис.1 б) будет в других масштабах приближенно показывать также изменение напряжения на контуре U и изменения токов IL и IC На (рис. 2) изображена подобная кривая вместе с графиком тока генератора, который в данном случае почти не меняется.

Основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

Источник

Резонанс токов в параллельном колебательном контуре

Рассмотрим случай параллельного соединения колебательного контура с источником тока (рис. 1) и посмотрим, каково будет сопротивление контура для токов различных частот в этом случае. Если частота тока невелика (ниже резонансной), то почти весь ток пойдет по наиболее легкому для него пути — через индуктивную ветвь; сопротивление контура при низких частотах будет небольшим по величине и индуктивным по своему характеру.

Для токов высоких частот (выше резонансной) более легким путем будет путь через емкостную ветвь, и, следовательно, сопротивление контура будет также небольшим по величине, но емкостным по характеру.

При резонансной частоте, когда емкостное сопротивление равно индуктивному, путь для тока будет одинаково трудным через обе ветви. Мы знаем, что при параллельном соединении двух равных сопротивлений общее сопротивление равняется половине любого из них. Поэтому, казалось бы, что сопротивление контура при резонансе должно равняться половине одного из реактивных сопротивлений. Однако, не следует забывать, что мы имеет дело, с сопротивлениями, хотя и одинаковыми по величине, но имеющими принципиально различный характер. Это различие проявляется в том, что токи в индуктивной и емкостной ветвях контура сдвинуты по фазе друг относительно друга на 180°. Отсюда непосредственно следует, что в неразветвленной части цепи всегда протекает не суммарный, а разностный ток (рис. 1).

Читайте также:  Устройство параметров сети переменного тока

Токи при параллельном резонансе

Рисунок 1. Токи при параллельном резонансе. В неразвлетвленной части цепи протекает не скммарный, а разностный ток.

Поэтому при резонансе, когда токи в емкостной и индуктивной ветвях равны между собой, ток в неразветвленной части цепи будет равен нулю, какое бы напряжение мы ни прилагали к контуру. При резонансе между точками АВ цепь будет казаться разорванной, т. е. сопротивление ее между этими точками будет бесконечно велико, а отнюдь не будет равным половине одного из реактивных сопротивлений. Практически бесконечно большого сопротивления контура при резонансе не бывает, так как из-за наличия активного сопротивления в контуре (сопротивление провода катушки) сдвиг фаз токов никогда не может быть равным точно 180°.

Однако активное сопротивление катушки обычно бывает много меньше ее индуктивного сопротивления, и поэтому сопротивление колебательного контура при резонансе может достигать очень больших величин.

Сопротивление колебательного контура при параллельном резонансе равно:

Сопротивление контура при резонансе токов

где L выражено в гн, С—в ф, RL—в ом.

Полное сопротивление колебательного контура при резонансе является чисто активным в силу того обстоятельства, что индуктивное и емкостное сопротивления взаимно компенсируются.

Кривые изменения полного сопротивления колебательного контура между точками АВ при изменении частоты тока приведены на рис. 2,б.

rezonans-tokov

Рисунок 2. Резонанс токов. а) — схема и обозначения; б) — график полного сопротивления.

При параллельном резонансе токи ,в ветвях контура достигают наибольшей величины; поэтому параллельный резонанс называется резонансом токов.

Явление резонанса имеет огромнейшее значение в радиотехнике. На земном шаре имеется большое количество передающих радиостанций. Передачи всех этих радиостанций распространяются в эфипе и все одновременно принимаются приемной антенной. Нетрудно представить себе, каким получилось бы нагромождение друг на друга передач, если бы мы не могли выделить из этого хаоса только одну нужную нам. Вот тут-то на помощь приходит явление резонанса. Передающие радиостанции излучают в пространство электромагнитную энергию на различных частотах, мы же, настраивая контуры нашего приемника в резонанс с той или иной частотой, тем самым выбираем нужную нам передачу.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



6 Резонансные режимы в электрических цепях синусоидального тока

Резонанс (от лат. Resono «отзыв, откликаюсь») — уникальное явление. Его можно наблюдать в разнообразных типах физических систем, которые находятся под воздействием переменных во времени внешних возмущений. Говоря простым языком, резонанс — это рост амплитуды вынужденного колебания в системе когда совпадают частоты колебаний воздействующей внешней силы с одной из собственных частот колебательной системы. Это явление впервые описал Галилео Галилей в 1638 году. Проявления резонанса имеют определенные специфические особенности в различных системах и поэтому более подробно остановимся на некоторых из них.

Резонанс токов при параллельном включении емкостной и индуктивной нагрузки

Рассмотрим на примере колебательной системы которая состоит из генераторной установки, с базовыми параметрами: емкость и индуктивность. Все эти элементы соединены в параллельную электрическую цепь. Очевидно то, что в таком колебательном контуре выходное будет равняться напряжению, подаваемому генератором.

Токи в ветвях этих цепей действуют в противофазе относительно друг друга. То есть, токи в ветвях таких колебательных систем имеют взаимное встречное направление, а суммарный ток цепи колебательного контура равен их разности.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):. От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Базовые принципы

Говоря другими словами, если в цепи большее индуктивное сопротивление AA больше AB, тогда ток в индуктивной нагрузке меньше тока в емкостной. И, наоборот, когда AB больше AA, ток в конденсаторной нагрузке меньше, чем ток в индуктивной нагрузке. И, как следствие, ток в не разветвленном участке цепи контура будет иметь индуктивный или емкостной характер.

При этом необходимо учитывать, что в первом и во втором случаях нагрузка будет носить реактивный характер, то есть подключенная цепь не будет являться потребителем энергии генераторной установки.

Что такое резонанс?

Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.

Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:

Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.

Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.

Признаки явления

Базовый показатель резонанса — когда реактивные сопротивления одинаковые, то есть AA = AB. Тогда ток не разветвленной части контура отсутствует, а в каждой отдельно взятой из ветвей будет протекать ток с максимальной амплитудой, и наступает обсуждаемое явление.

В ходе изысканий ученые пришли к выводу, который кажется очень странным. Действительно, генератор нагружают двумя реактивными нагрузками, а ток в не разветвленной его части отсутствует, более того, через каждую из них протекают ток равной силы и с максимальной амплитудой токи. Объяснить такое явление можно удивительными свойствами магнитных полей на индуктивных нагрузках и свойствами электрического поля емкости.

Читайте также:  Прибор непосредственно измеряющий мощность электрического тока в цепи

При явлении резонанса происходит обмен энергетическими колебаниями между этими полями в индуктивности и емкости. Генерирующая установка, передав энергию в контур, оказывается как бы «не у дел». Его даже можно совсем выключить, а ток в этой части контура будет поддерживаться без генератора, таким, как и был в самом начале. А напряжение останется точно таким, какое было подано с генератора.

Применение

  • Высокодобротный колебательный контур оказывает току определенной частоты f значительное сопротивление. Вследствие чего явление резонанса токов используется в полосно-заграждающих фильтрах.
  • Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции.
  • Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.
  • Колебательный контур используют для снижения нагрузки на генераторы. Для этого у приёмного трансформатора на основе первичной обмотки делают колебательный контур. Но трансформатор подходит только тот у которого обмотки не накладываются друг на друга и располагаются в разном месте на магнитопроводе. Если параллельно однофазному асинхронному двигателю подключить конденсатор определенной емкости для достижения резонанса, это уменьшит нагрузку на генератор. Промышленные индукционные котлы используют колебательный контур для лучшего КПД. При этом между потребителем и генератором должна быть некая развязка в виде входного сопротивления или в виде развязочного трансформатора.

Прикладное применение явление резонанса токов

Практически все устройства силовой электротехники использует подобные колебательные контуры, например — силовые трансформаторы. Также, это явление можно использовать для настройки работы телевизионного и радио приемников, сварочных систем и во многих других устройствах где нужен резонанс токов. Его даже применяет в эстетической медицине (микроволновой терапии).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Область применения

Это явление в цепи колебательного контура имеет тенденцию к затуханию. Чтобы стало возможным использовать это явление в различных приборах и устройствах, необходимо постоянно поддерживать характеристики электричества в заданных пределах. Сделать этот процесс постоянным очень просто: достаточно подпитывать систему переменным напряжением с постоянными значениями частоты.

Важно! Эффект резонанса широко применяется в различных радиопередающих и принимающих сигнал устройствах. Наиболее часто, это явление используется в различных фильтрах

Например, если на пути входящего электрического сигнала необходимо избавиться от составляющей определённой частоты, то параллельно проводнику устанавливают конденсатор, резистор и дроссель. Если фильтр необходим для того, чтобы «пропустить» сигнал определенной частоты, то также изготавливается фильтр из ёмкости, сопротивления и индуктивности, но подключается такая система последовательно

Наиболее часто, это явление используется в различных фильтрах. Например, если на пути входящего электрического сигнала необходимо избавиться от составляющей определённой частоты, то параллельно проводнику устанавливают конденсатор, резистор и дроссель. Если фильтр необходим для того, чтобы «пропустить» сигнал определенной частоты, то также изготавливается фильтр из ёмкости, сопротивления и индуктивности, но подключается такая система последовательно.


Электрический фильтр

Использовать эффект резонанса можно и для повышения напряжения. Например, в ситуации, когда электрический двигатель не способен работать на расчетных показателях мощности по причине низкого напряжения, достаточно установить по мощному конденсатору на каждую фазу, чтобы полностью разрешить проблему.

Резонанс в электрической цепи может возникать при наличии определенных условий, поэтому от него можно избавиться либо вызвать намеренно. Если такое явление является нежелательным, то, во многих случаях, достаточно изменить рабочую частоту или увеличить сопротивление, чтобы полностью устранить это паразитическое явление. Простейшая система этого типа состоит из конденсатора, резистора и дросселя, поэтому, при необходимости, можно легко собрать устройство, в котором это электрический эффект будет выполнять какую-либо полезную функцию.

Источник

Параллельный резонанс в цепи переменного тока

Параллельный резонанс

Физическое явление параллельного резонанса широко применяется в радиоэлектронике. Для построения колебательных контуров, состоящих из активного и реактивного сопротивлений, следует собрать цепь из сопротивления, емкости, а также индуктивности. Для этого необходимо разобраться в назначении резонанса, нахождении сопротивления радиокомпонентов, его основном применении в радиотехнике, а также условии его возникновения.

  • Общие сведения
    • Активное сопротивление
    • Другие виды нагрузок
  • Понятие о резонансе
    • Случаи для тока и напряжения
    • Расчет параллельного контура

Общие сведения

Электрическим сопротивлением проводника является свойство проводить электрический ток. Для построения и расчета колебательного контура необходимо знать способы нахождения активного и реактивного сопротивлений. Сопротивление для цепей, питающихся от переменного тока (ЦПТ), бывает следующих видов: активное, реактивное и полное.

Активным сопротивлением ® является обыкновенный резистор. Реактивное состоит из следующих типов нагрузки: индуктивное и емкостное. Индуктивное (Xl) — сопротивление катушки индуктивности в цепи переменного тока, а емкостное (Xc) определяется наличием емкости в цепи (конденсатора).

При сложении активного и реактивного сопротивлений получается полное сопротивление участка электрической цепи, которое обозначается литерой Z.

Активное сопротивление

Активным сопротивлением в ЦПТ называется наличие любой нереактивной нагрузки. Его можно рассчитать следующими способами: при помощи измерения величины сопротивления и расчетным методом. Для измерения R применяется прибор, который называется омметром. Омметр входит в состав комбинированных приборов измерения электрических величин, которые называются мультиметрами. Он подключается параллельно нагрузке, причем для проведения измерений следует выключить электрическую цепь, поскольку наличие тока приведет прибор к выходу из строя.

Резонанс токов это

Существует еще один способ, который является расчетным, однако он требует знаний в области физики. При вычислении величины R следует произвести измерения силы тока и напряжения, а точнее, их амплитудных значений (Uм и Iм соответственно). Это возможно сделать при помощи соответствующих приборов.

Для измерения величины напряжения применяется вольтметр, а силу тока можно измерить при помощи амперметра. Кроме того, эти приборы измеряют только действующие значения напряжения (Uд) и силы тока (Iд). Для расчета амплитудных значений следует воспользоваться следующими формулами:

  1. Uм = Uд * sqrt (2).
  2. Iм = Iд * sqrt (2).

​Для расчета R, которое можно найти, используя закон Ома для участка цепи (Iм = Uм / R): R = Uм / Iм. Воспользовавшись соотношениями зависимостей амплитудных значений от действующих, возможно рассчитать R: R = Uд * sqrt (2) / Iд * sqrt (2) = Uд / Iд. На практике применяют способ измерения сопротивления омметром.

Другие виды нагрузок

При наличии в ЦПТ катушки индуктивности возникает Xl, которую необходимо только рассчитывать. Индуктивное сопротивление рассчитывается по формуле, для которой необходимы циклическая частота (w) и индуктивность катушки (L): Xl = w * L.

Читайте также:  Какая частота тока в наших сетях

 условие резонанса токов

Циклическая частота рассчитывается по следующей формуле, для которой необходимо только знать частоту переменного тока (f) и число ПИ (3,1416): w = 2 * 3,1416 * f. Индуктивность катушки рассчитывается, исходя из значений диаметра катушки (D в мм), числа витков (n) и длины намотки (l): L = (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l). Если подставить в формулу расчета индуктивного сопротивления все соотношения, то получается: Xl = 2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l).

Если в ЦПТ присутствует конденсатор с емкостью C, то добавляется еще и емкостное сопротивление — Xl, которое рассчитывается по следующей формуле: Xc = 1 / (w * C) = 1 / (2 * 3,1416 * f * C). Полное сопротивление в ЦПТ обозначается литерой Z и рассчитывается по формуле: Z = sqrt [sqr® +sqr (Xс — Xl)]. Если подставить в формулу полного сопротивления соотношения, по которым находятся R, Xl и Xc, то получается следующая формула: Z = sqrt [sqr (Uд / Iд) +sqr ((1 / (2 * 3,1416 * f * C)) — (2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l))]. Для упрощения вычисления можно рассчитать отдельно значения R, Xc и Xl.

Понятие о резонансе

Резонанс в цепи переменного тока происходит при образовании резонансной частоты, при которой некоторые сопротивления компенсируют друг друга. Основными признаками резонанса являются:

  1. Совпадения по фазе U и I в цепи.
  2. Значение активного и полного сопротивлений совпадают: Z = R.
  3. Сила тока является максимальной.
  4. Падение величины U на R равно U, которое приложено к контуру LC.
  5. Выполняется равенство падений U на индуктивности и емкости, а также противоположность по фазе и больше приложенного напряжения: Ul > U, Ul = I * Xl = I * Xc и U = I * R.

 резонанс тока и напряжения

В последнем случае коэффициент усиления по напряжению рассчитываются следующим способом: Ku = Ul / U = sqrt (L/C) / R = p / R. Этот коэффициент называется добротностью контура и обозначается литерой Q. Волновое сопротивление контура обозначается p, которое вычисляется по формуле: p = sqrt (L/C).

Резонанс в ЦПТ бывает двух видов: последовательный и параллельный. Для последовательного резонанса условием является минимальное сопротивление и нулевая фаза. В основном он применяется в схемах с реактивными составляющими L и C. При параллельном типе резонанса происходит равенство емкостных и индуктивных сопротивлений, которые компенсируют друг друга. Этот тип соединения должен постоянно быть равен расчетной величине. Он получил широкое применение, благодаря резкому минимуму импеданса. Импеданс — полное сопротивление в цепи переменного тока, который обозначается Z.

Контур является схемой, в которой подключены параллельно или последовательно следующие элементы: резистор, катушка индуктивности и конденсатор.

Эта схема образует осциллятор для тока с гармонической составляющей. Наличие сопротивления в схеме приводит к затуханию и уменьшает резонансную пиковую частоту.

Во всей силовой радиоэлектронике применяются колебательные контуры. Примером его является силовой трансформатор. Кроме того, контур используется для настройки телевизоров, согласования антенн. Возможно применение в качестве полосового и режекторного фильтров, которые применяются в датчиках для распределения низких и высоких частот. Эффект резонанса применяется и в медицине при микротоковой терапии, и при проведении биорезонансной диагностики.

Случаи для тока и напряжения

В радиоэлектронике применяется резонанс напряжений и токов. Они отличаются друг от друга и применяются в определенных случаях. Резонанс напряжений возникает при последовательном соединении в RLC-цепи (схема 1):

 резонанс в цепи переменного тока

Схема 1 — Последовательное соединение элементов.

Основным условием возникновения резонанса является равенство частот источника питания и колебательного контура. Кроме того, Xc = Xl, они являются противоположными величинами (по знаку) и равны 0. Напряжения Uc и Ul противоположны по фазам и компенсируют друг друга, следовательно, Z = R. В результате этого происходит увеличение тока, так как при уменьшении сопротивления по закону Ома происходит увеличение I. Вырастает не только I, но и значения U на элементах схемы. При резонансе значения напряжений на конденсаторе и катушке индуктивности могут быть больше относительно напряжения источника питания.

При увеличении частоты значение Xl увеличивается, а Xc — уменьшается. При равенстве частот резонансной и источника питания значение Z будет уменьшаться. Резонансная частота находится по формуле: w = sqrt (1 / (L * C)). Резонанс в ЦПТ зависит от следующих величин: частоты источника питания — f, параметров L и C. Обмен электрической энергией осуществляется между катушкой и конденсатором через источник питания.

Резонанс токов в цепи переменного тока возникает при параллельном включении активных и реактивных нагрузок. На схеме 2 изображен контур с параллельным соединением:

 резонанс тока

Схема 2 — Параллельное соединение в RLC-контуре.

В этом случае резонанс возникает при равенстве частот источника питания и резонансной, а также равенства проводимостей конденсатора (Bc) и катушки (Bl). Проводимость — величина, обратная сопротивлению. При увеличении частоты источника питания происходит рост полного сопротивления, при котором ток уменьшается. В результате этого, ток уменьшается и равняется активной составляющей. Для определения резонансной частоты следует воспользоваться алгоритмом нахождения этой величины:

  1. Удельные проводимости для резистора, катушки индуктивности и конденсатора: G = 1 / R, Bl = 1 / (w * L) и Bc = w * C соответственно.
  2. 1 / (w * L) = w * C.
  3. Резонансная частота вычисляется по формуле: w = sqrt (1 / (L * C)).

Явление резонанса может привести к выходу из строя элементов схемы, приборов или устройств. Для того чтобы избежать этого, необходимо производить точные расчеты колебательных контуров.

Расчет параллельного контура

Необходимо сделать параллельный контур, частота резонанса которого равна 1,5 МГц. Для его изготовления нужно осуществить расчет, исходя из которого возможно будет его изготовить. Рассчитывать контур следует точно, поскольку любая неточность может привести к негативным последствиям. Основной задачей является расчет нужных индуктивности катушки и емкости конденсатора. Расчет осуществляется по следующему алгоритму:

Резонанс напряжений и токов

  1. Вычислить необходимую индуктивность в мкГн при заданной емкости и частоте: L = sqr (159,12 / f) / C.
  2. Рассчитать количество витков (n) и диаметр каркаса (d в мм) катушки: n = 32 * sqrt (L / d).

Пусть С = 2000 пФ, тогда L = sqr (159,12 / 2) / 2000 = 5,6 мкГн. Количество витков для катушки с d = 3 мм: n = 32 * sqr (5,6 / 3) = 112.

Этот метод является приближенным, поскольку не учитывается межвитковое пространство катушки. Радиолюбители часто применяют уже готовые катушки, имеющие длину 15 мм с диаметром d = 3 мм. Вычислить можно, используя другую формулу: n = 8,5 * sqrt (L) = 8,5 * 2,3664 = 21.

Таким образом, явление резонанса применяется при построении различной радиоаппаратуры и требует выполнения верных расчетов, поскольку даже при незначительных ошибках могут выйти из строя дорогостоящие детали.

Фотография Николая Витальевича

Красников Николай

Источник