Меню

Счетчик гейгера преобразователь схема

Экономичный источник питания счетчика Гейгера

В автономных приборах непрерывного радиационного контроля, использующих в качестве датчиков радиации счетчики Гейгера, основным энергопотребителем является устройство, преобразующее невысокое напряжение источника питания прибора в напряжение 360. 440 В, соответствующее плато счетной характеристики галогенового счетчика Гейгера (см. приложение 4). Принципиальная схема энергоэкономичного преобразователя напряжений показана ниже:


Экономичный источник питания счетчика Гейгера

Его основу составляет блокинг-генератор, на выходной обмотке которого формируются короткие (5. 10 мкс) импульсы амплитудой около 420 В. Через диоды VD3, VD4 они заряжают конденсатор С4. Этот конденсатор и будет источником питания счетчика Гейгера (напомним, что проводимость счетчика Гейгера в паузе между возбуждениями близка к нулю).

Энергоэкономичность преобразователя обеспечивается тем, что межимпульсная пауза в его блокинг-генераторе задается не собственной времязадающей цепочкой R1C3, как это обычно делается, а одновибратором (DD1.1, DD1.2 и др.), работающим на микротоках [2]. Продолжительность паузы в нем tп@R3·C5 выбирают так, чтобы напряжение на выходе преобразователя в режиме фонового счета было близко к высшему значению напряжения на плато счетной характеристики счетчика Гейгера. (В дальнейшем снижение напряжения на выходе преобразователя, его смещение к другому краю плато будет обязано лишь снижению напряжения источника питания.)

Блокинг-генератор сформирует внеочередной импульс подпитки конденсатора С4, если на входе 2 элемента DD1.2 возникнет провоцирующий ее импульс. Если этот импульс будет возникать при каждом срабатывании счетчика Гейгера, то это позволит удержать напряжение на выходе преобразователя на уровне, не зависящем от скорости счета.

Трансформатор Т1 блокинг-генератора наматывают на ферритовом сердечнике, составленном из двух колец М3000МН 12х8х3 мм. Кольца склеивают, острые их ребра заглаживают наждачной бумагой и весь сердечник обматывают тонкой фторопластовой или лавсановой лентой.

Сначала наматывают обмотку II, она содержит 420 витков провода ПЭВ-2 0,07. Намотку ведут в одну сторону, почти виток к витку, оставляя между ее началом и концом «зазор» 1. 1.5 мм. Обмотку II также покрывают слоем изоляции. Далее наматывают обмотку I — 5 витков провода ПЭВШО 0,15. 0,2 — и по ней — обмотку III — 2 витка того же провода. Эти обмотки должны быть распределены по сердечнику возможно равномернее.

Правильная фазировка обмоток трансформатора (точками показаны их синфазные концы) должна быть соблюдена при его монтаже. Экспериментировать с этим не следует — можно сжечь транзистор.

В преобразователе: резисторы Rl, R2 — типа МЛТ-0,125, R3 — КИМ-0,125; конденсатор С1 — любой оксидный, С2, С5 — типа КМ-6 или К10-176, СЗ — К53-30, С4 — К73-9.

Преобразователи такой структуры закрывают, по существу, саму проблему питания счетчиков Гейгера от низковольтных источников: потребляемый таким преобразователем ток уже составляет малую часть тока саморазряда большинства гальванических батарей.

Источник

СЧЕТЧИК ГЕЙГЕРА — СХЕМА И ПЛАТА

Этот проект представляет собой простой счетчик Гейгера, который обнаружит бета-частицы и гамма-лучи. Индикация динамиком, который воспроизводит один щелчок для каждого счета. С добавлением схемы частотомера можно видеть количество микрорентген в секунду. Звуковая версия схемы очень полезна для идентификации радиоактивных предметов, таких как часы со светящимися циферблатами. Схема дозиметра очень экономична и обеспечивает много часов работы от одной 9 В батареи Крона.

Предполагалось, что будет установлен счетчик Гейгера типа DOI-80, так как устройство должно было иметь минимальное энергопотребление и быть как можно более дешевым. Схема потребляет минимальный ток и преобразователь работает на частоте 50 кГц. Измеритель радиации характеризуется наличием дешевых элементов — можно купить их в любом магазине электроники.

Читайте также:  Заработок за счетчик сайта

Схема самодельного счетчика Гейгера

Давайте перейдем к принципиальной схеме:

Основой является двухтактный преобразователь, приводимый в действие генератором на основе вентилей NAND. Рабочая частота около 50 кГц поступает на 2 транзистора. К коллекторам транзисторов включается трансформатор.

Генератор управляется операционным усилителем U2A, который измеряет выходное напряжение инвертора. Если оно превышает установленное значение, низкий уровень будет подаваться на вход 13 логического элемента U1D и вход 5 U1B. Генератор остановится и оба транзистора отключатся. Это условие будет поддерживаться до тех пор, пока выходное напряжение не упадет примерно на 20 В ниже уровня, отключающего инвертор.

На практике генератор инвертора отключается в течение большей части времени и начинает лишь периодически перезаряжать выходной конденсатор высокого напряжения. Примерная осциллограмма переключения напряжения на генераторе далее:

В схеме имеется три линии напряжения:

  1. Напряжение питания, питающее преобразователь и операционные усилители, это напряжение может быть любым в диапазоне 4 — 15 В.
  2. Напряжение +3,3 В от стабилизатора LP2950 (можно использовать любой другой на 3,3 В с низким потреблением мощности) является опорным напряжением для операционного усилителя U2A. В связи с использованием +3,3 В для питания цифровой части, микросхемы TTL должны быть серии HC (напряжение питания 2-6 В). Они характеризуются низким энергопотреблением.
  3. Напряжение 490 В от преобразователя и умножителя, питающее счетчик Гейгера и схему делителей напряжения R2, R3, R4. Чтобы еще больше снизить энергопотребление, этот отдел может быть переработан с использованием в 5 раз более высоких сопротивлений. Входное сопротивление U2A настолько велико, что оно не будет нагружать такой делитель. Выходное напряжение регулируется потенциометром R4.

Сигнал от счетчика Гейгера формируется операционным усилителем U2B и подается на моностабильный триггер U4A, а затем выходной импульс триггера управляет громкоговорителем.

Используемые интегральные микросхемы имеют очень низкое энергопотребление (порядка микроампер), поэтому ток от источника питания, в основном является результатом работы преобразователя. Удалось достичь потребления 1 мА от батареи 9 В с фоновым излучением (и 2-3 мА при приближении к радиоактивному элементу).

Советы по сборке дозиметра

Конденсаторы C2, C5, C6 должны иметь минимальное рабочее напряжение 600 В. Конденсатор С6 должен быть 22-220 нФ.

Трансформатор наматывался на сердечник F2001, L9, 4.0, AL400. Первичная обмотка 2×70 витков проводом 0,15 мм, вторичная 2000 витков тем же проводом. Это оптимально для батареи 9 В. Если используется более низкое напряжение питания или прибор требует напряжения выше 500 В, может потребоваться намотка большего количества витков на вторичной стороне.

Если получается, можете намотать 3000 витков, потому что выходное напряжение в любом случае контролируется. Проволока может быть наименьшей доступной толщины. В трансформаторе выбран зазор так, чтобы потребляемый ток был как можно ниже (минимум выходил при зазоре около 0,5 мм). Меньший и больший зазор вызывал большее потребление тока.

Вторая версия схемы дозиметра

В ещё одной версии счётчика Гейгера исключен стабилизатор 3,3 В, используя цепи CMOS серии 4000, которые имеют широкий диапазон рабочих напряжений, потребляя меньше тока чем 74HCT. Необходимый вольтаж теперь обеспечивает автоматически LM385, с током около 10 мкА.

Читайте также:  Электросчетчик класс точности обозначение

Решено не использовать микросхему 555 в CMOS-версии в качестве моностабильного триггера, поскольку она потребляет больше тока, чем 4098, и, кроме того, в стабильном состоянии замыкает резистор в ветви RC на землю, что дополнительно вызывает протекание ненужного тока.

Под операционный усилитель, измеряющий +490 В использовался программируемый чип LM4250, потому что он дешев и доступен, можем установить потребляемую мощность (резистор R7) на очень маленькое значение — гораздо меньше, чем другие известные операционные усилители.

LM4250 работает как операционный усилитель, в котором потребление тока определяется R7. Если вы используете другой усилитель, не паяйте его. Все синхронизирующие конденсаторы также были уменьшены до минимума, чтобы минимизировать токи перезарядки.

Что касается детекторов — счетчиков радиации, существует много типов, например, STS-5, DOB-50, DOB-80, DOI-30, DOI-80, даже отечественный СБМ-2.

Счетчики Гейгера, в зависимости от конструкции, должны питаться напряжением 200-1000 В. Лучше всего подавать на него более высокое напряжение и следить за количеством импульсов. Но если происходит резкое увеличение количества импульсов, уменьшите напряжение примерно на 50 В — и при таком напряжении прибор должен работать. С резистором, который соответствует лампе, лучше не опускаться ниже 2,2 МОм. Предпочтительно 4,7 или 5,6 мегаом. Счетчики Гейгера не любят перегружаться, они от этого изнашиваются.

Потребляемая мощность импульсная, импульс 4 мс 30 мА каждые 1,2 с. В оставшийся период потребляемый ток не превышает 150 мкА. Среднее не превышает 400 мкА. В этом случае батарея на 9 В должна работать в течение месяца даже непрерывной работы. А тут можете скачать файлы

Источник

Повышающий преобразователь – источник питания для счетчика Гейгера. Схема

В портативных устройствах постоянного радиационного контроля, в которых применяются в роли датчиков радиации счетчики Гейгера, главным потребителем питания служит модуль, преобразующее низковольтное напряжение батареи питания в повышенное до 360…440 вольт, соответствующее рабочему напряжению используемого счетчика Гейгера.

Ниже приводится вариант экономичного преобразователя, который можно использовать при строительстве дозиметра.

Описание преобразователя питания для дозиметра

Схема преобразователя построена на базе блокинг-генератора. С его повышающей обмотки следуют короткие импульсы длительностью порядка 5…10 мкс и амплитудой примерно 420 В. Сквозь диоды VD3, VD4 они способствуют заряду емкости С4. Данная емкость и является источником питания для счетчика Гейгера.

Значительная экономичность данного преобразователя создается тем, что пауза между импульсами в блокинг-генераторе создается не своей времязадающей цепочкой R3-C3, а с помощью одновибратора, построенного на логических элементах DD1.1 и DD1.2. Длительность паузы в нем (T=R2*C5) подбирают так, чтобы потенциал на выходе преобразователя в фоновом режиме подсчета было приближено к высшему значению рабочего напряжения счетчика Гейгера.

Блокинг-генератор создает внеочередной сигнал подпитки емкости С4, если на входе 5 логического элемента DD1.2 появится возбуждающий ее сигнал. Если данный сигнал будет появляться при каждой активации счетчика Гейгера, то это будет способствовать сдерживанию напряжения на выходе преобразователя на уровне, не связанном со скоростью подсчета.

Конструкция и детали преобразователя для счетчика Гейгера

Трансформатор Т1 блокинг-генератора собирают на сердечнике из феррита, который составлен из 2-х колец марки М3000МН и размером 12х8х3 мм. Кольца необходимо склеить, затем наждачной бумагой необходимо сточить у них острые грани. Далее обмотать одним слоем фторопластовой лентой или трансформаторной бумагой.

Читайте также:  Стенд для поверки счетчиков электрической энергии

Сперва производят намотку обмотки II, она имеет 420 витков провода ПЭВ-2 диаметром 0,07 мм. Необходимо провод укладывать практически виток к витку, оставив зазор между началом и концом обмотки примерно 2 мм. После намотки ее изолируют трансформаторной бумагой.

Следующая идет обмотка I, которая наматывается проводом ПЭВШО диаметром 0,15…0,2 мм и содержит 5 витков. Поверх данной обмотки наматывается обмотка III состоящая всего из 2 витков того же провода. Данные обмотки необходимо распределить равномерно по всему сердечнику.

Внимание. Необходимо правильно подключить данный трансформатор к схеме (начало витков обозначено на схеме точками).

В схеме применены сопротивления Rl, R3 — марки МЛТ-0,125, R2 — КИМ-0,125; емкость С1 — произвольная электролитическая, СЗ — К53-30, С2, С5 — марки КМ-6 или К10-176, С4 — К73-9.

Источник



Преобразователь напряжения DC/DC +400В для счетчика Гейгера (MC34063)

Обычно в схемах дозиметров и индикаторов радиоактивности применяют для питания счетчиковГейгера источники на основе однотранзисторного блокинг-генератора. Конечно, такая схема проста, но у неё есть и недостатки — практически полное отсутствие стабилизации выходного напряжения, которое поступает на анод счетчика Гейгера.

А ведь чувствительность счетчика Гейгера напрямую зависит от напряжения между его электродами. Кроме того, есть трудности с налаживанием схемы источника высокого напряжения, потому что выходное напряжение никак не регулируется, и если его величина не соответствует необходимой, приходится перематывать вторичную обмотку импульсного трансформатора.

Поэтому считаю вполне обоснованным построение схемы источника питания счетчика Гейгера на схемы повышающего DC/DC преобразователя напряжения с широтно-импульсной модуляцией, обеспечивающей регулировку выходного напряжения и его поддержание стабильным.

Принципиальная схема

Схема источника построена по схеме повышающего DC/DC преобразователя напряжения на микросхеме MC34063 с трансформаторным выходом. Почти по типовой схеме её включения. На схеме показан источник питания — батарея типа «Кроны». Но напряжение питания может быть и больше и меньше.

Микросхема МС34063 может работать в пределах напряжения питания от ЗV до 40V. Например, можно запитать схему от автомобильного источника 12V, или гальванической батареи напряжением 3V, 4,5V, 6V, либо от сетевого зарядного устройства для сотовых телефонов или от USB-порта персонального компьютера (напряжение 5V). Кстати, от изменения напряжения питания во всем допустимом диапазоне выходное напряжение почти не изменяется.

Рис. 1. Принципиальная схема преобразователя напряженияиз 9В в +400В для счетчика Гейгера на микросхеме MC34063.

Принцип работы МС34063 многократно описан в различной литературе, и останавливаться здесь на нем нет смысла. Напомню, что стабилизация осуществляется подачей пониженного резистивным делителем напряжения с выхода на компараторный вход микросхемы (на вывод 5). И от соотношения плеч этого делителя напряжения как раз и зависит величина выходного напряжения.

Трансформатор Т1 намотан на ферритовом кольце внешним диаметром 28 мм (можно больше или меньше, где-то от 20 до 30 мм). Первичная обмотка — 20 витков провода ПЭВ 0,43. Вторичная обмотка — 400 витков провода ПЭВ 0,12. Сначала наматывают вторичную обмотку, потом на неё — первичную.

Между обмотками проложить тонкую фторопластовую изоляцию (например, размотанную с провода МГТФ).

Налаживание

Устанавливаем R1 в верхнее по схеме положение. Включаем питание. Если источник не заработал сразу — поменять местами выводы одной из обмоток трансформатора.

Выходное напряжение устанавливают подстройкой R1.

Источник