Меню

Сила тока i в цепи состоящей из термопары с сопротивлением r1 4 ом

Контрольная работа по теме «Законы постоянного тока»
тест по физике (10 класс)

Контрольная работа по теме «Законы постоянного тока» содержит разноуровненвы задания: задания с выбором ответа, решение расчетных задач.

Скачать:

Вложение Размер
kontrolnaya_rabota_10_klass_po_teme_zakony_postoyannogo_toka.doc 46 КБ

Предварительный просмотр:

Контрольная работа по теме «Законы постоянного тока»

1. Электрический ток — это .

1) направленное движение частиц 2) хаотическое движение заряженных частиц

3) изменение положения одних частиц относительно других

4) направленное движение заряженных частиц

2. За 5 секунд по проводнику при силе тока 0,2 А проходит заряд равный .

1) 0,04 Кл 2) 1 Кл 3) 5,2 Кл 4) 25 Кл

3. Работу электрического поля по перемещению заряда характеризует .

1) напряжение 2) сопротивление 3) напряженность 4) сила тока

4. Напряжение на резисторе с сопротивлением 2 Ом при силе тока 4 А равно .

1) 0,55 В 2) 2 В 3) 6 В 4) 8 B

5. Если проволоку вытягиванием удлинить в 3 раза, то ее сопротивление .

1) уменьшится в 3 раза 2) увеличится в 3 раза 3) уменьшится в 9 раз 4) увеличится в 9 раз

6. На участке цепи, состоящем из последовательно включенных сопротивлений r 1 = 2 Ом и R 2 = 6 Ом, напряжение равно 24 В. Сила тока в каждом сопротивлении .

l) I 1 = I 2 = 3 A 2) I 1 = 6 A, I 2 = 3 А

3) I 1 = 3 A, I 2 = 6 A 4) I 1 = I 2 = 9 A

7. К последовательно соединенным сопротивлениям R 1 = R 2 =R 3 = 2 Ом параллельно подключено сопротивление R 4 = 6 Ом, полное сопротивление цепи равно .

1) 12 Ом 2) 6 Ом 3) 3 Ом 4)1/12 0м

8. Работу электрического тока можно рассчитать, используя выражение:

1) IR 2) IU Δ t 3) IU 4) I 2 R

9. Мощность лампы накаливания при напряжении 220 В и силе тока 0,454 А равна …

1) 60 Вт 2) 100 Вт 3) 200 Bт 4) 500 Bт

10. В источнике тока происходит .

1) преобразование электрической энергии в механическую

2) разделение молекул вещества

3) преобразование энергии упорядоченного движения заряженных частиц в тепловую

4) разделение на положительные и отрицательные электрические заряды

11. Закону Ома для полной цепи соответствует выражение .

12. Единица измерения ЭДС в Международной системе .

1) Ом . м 2) Ом 3) А 4) В

13. Два резистора сопротивление 5 Ом и 35 Ом соединены последовательно. Сила тока в цепи 0,5А. Рассчитайте электрическую цепь.

14. ЭДС источника 26 В, внутреннее сопротивление 2 Ом, резисторы соединены последовательно и соответственно R 1 = R 2 = R 3 = R 4 = 6 Ом. Определить силу тока в цепи.

15. По участку цепи состоящей из трех равных резисторов: два резистора соединены последовательно, а третий к ним параллельно, проходит ток с силой 3 А. Амперметр, включенный в последовательный участок цепи, показывает .

Контрольная работа по теме «Законы постоянного тока»

1. За направление тока принимают направление движения.

1) электронов 2) отрицательных ионов

3) заряженных частиц 4) положительно заряженных частиц

2. Время прохождения заряда 0,5 Кл при силе тока в проводнике 2 А равно .

1) 4 с 2) 25 с 3) 1 с 4) 0,25 с

3. Физическая величина, характеризующая заряд, проходящий через проводник за 1 секунду .

1) напряжение 2) сопротивление 3) напряженность 4) сила тока

4. Сопротивление резистора в цепи с током 4 А и падении напряжения на нем 2 В равно .

1) 8 Ом 2) 6 Ом 3)2 Ом 4) 0,5 Ом

5. Если проволоку разрезать поперек на 3 равные части и соединить их параллельно, то ее сопротивление .

1) уменьшится в 3 раза 2) увеличится в 3 раза

3) уменьшится в 9 раз 4) увеличится в 9 раз

6. Резисторы соединены последовательно R 1 = 4 Ом, R 2 = 4 Ом и падение напряжения на участке 24 В. Сила тока в каждом резисторе …

1) I 1 = 12 A, I 2 = 4 А 2) I 1 = I 2 = 3 А

3) I 1 = I 2 = 16 А 4) I 1 = 4A, I 2 = 12 А

7. К трем параллельно соединенным резисторам четвертый подключен последовательно R 1 = R 2 = R 3 = R 4 = 3 Ом. Полное сопротивление цепи равно …

8. Количество теплоты, выделяемое в проводнике при прохождении электрического тока можно рассчитать, используя выражение:

1) IR 2) I 2 R Δ t 3) IU 4) I 2 R

9.Утюг, включен в сеть с напряжением 220 В. Работа электрического тока силой 5 А за 10 минут .

1) 66 . 10 3 Дж 2) 66 . 10 4 Дж 3) 11 . 10 3 Дж 4) 220 Дж

10. К сторонним силам не относятся силы .

1) ядерные 2) электромагнитные 3) электростатические 4) механические

11. ЭДС источника тока определяется выражением .

12. Единица измерения в СИ внутреннего сопротивления источника тока …

1) Ом 2) В 3) Ом . м 4) A

13. Два резистора, сопротивление которых по 12 Ом, соединены параллельно. Напряжение в цепи 6В. Рассчитайте электрическую цепь.

14. ЭДС источника 24 В с внутренним сопротивлением 2 Ом последовательно включены резисторы R1 = R2 = R3 = R4 = 6 Ом. Определить силу тока в цепи.

1. Участок цепи состоит из трех равных резисторов. К двум последовательно соединенным резисторам параллельно подключен третий, по которому течет ток 3 А. Общий ток участка цепи равен .

Источник

§ 107. Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

При решении задач, связанных с расчётом работы и мощности тока, надо применять формулы (15.13) и (15.15).

Для определения силы тока в замкнутой цепи надо использовать закон Ома для полной цепи, а в случае нескольких источников правильно определить суммарную ЭДС.

Задача 1. Аккумулятор с ЭДС Ε = 6,0 В и внутренним сопротивлением r — 0,1 Ом питает внешнюю цепь с сопротивлением R = 12,4 Ом. Какое количество теплоты Q выделится во всей цепи за время t = 10 мин?

Р е ш е н и е. Согласно закону Ома для замкнутой цепи сила тока в цепи равна Количество теплоты, выделившейся на внешнем участке цепи, Q1 = I 2 Rt, на внутреннем — Q2 = I 2 rt. Полное количество теплоты

Полное количество теплоты

Задача 2. Разность потенциалов в сети зарядной станции равна 20 В. Внутреннее сопротивление аккумулятора, поставленного на зарядку, равно 0,8 Ом; в начальный момент времени его остаточная ЭДС равна 12 В. Какая мощность будет расходоваться станцией на зарядку аккумулятора при этих условиях? Какая часть этой мощности будет расходоваться на нагревание аккумулятора?

Р е ш е н и е. При зарядке аккумулятора зарядное устройство и аккумулятор соединены разноимёнными полюсами навстречу друг другу. Сила тока, идущего через аккумулятор, I = (U — Ε)/R. Мощность, расходуемая станцией:

Р1 = UI = U(U — Ε)/R = 200 Вт.

Мощность, расходуемая на нагревание аккумулятора:

Мощность, расходуемая на нагревание аккумулятора

Задача 3. При подключении вольтметра сопротивлением RV = 200 Ом непосредственно к зажимам источника он показывает U = 20 В. Если же этот источник замкнуть на резистор сопротивлением R = 8 Ом, то сила тока в цепи I2 = 0,5 А. Определите ЭДС и внутреннее сопротивление источника.

Р е ш е н и е. По закону Ома для полной цепи в первом случае сила тока во втором случае Показания вольтметра — падение напряжения на его внутреннем сопротивлении, т. е. U = I1RV. Из соотношения I1(RV + r) = I2(R + r) найдём внутреннее сопротивление источника:

Внутреннее сопротивление источника

Для ЭДС источника запишем: Ε = I2(R + r) = 24 В.

Задача 4. Определите силу тока короткого замыкания для источника, который при силе тока в цепи I1 = 10 А имеет полезную мощность Р1 = 500 Вт, а при силе тока I2 = 5 А — мощность Р2 = 375 Вт.

Р е ш е н и е. Сила тока короткого замыкания Полезная мощность Р = IU, где U — напряжение на зажимах источника, или падение напряжения на внешнем участке цепи. Напряжения на зажимах источника в первом и во втором случаях

Напряжения на зажимах источника в первом и во втором случаях

Вычтем почленно из первого выражения второе:

Вычтем почленно из первого выражения второе

откуда определим

ЭДС источника тока

ЭДС источника тока

Окончательно для силы тока короткого замыкания

Силы тока короткого замыкания

Конденсатор ёмкостью 2 мкФ включён в цепь содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом

Задача 5. Конденсатор ёмкостью 2 мкФ включён в цепь (рис. 15.12), содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом. Сопротивления резисторов R1 = 4 Ом, R2 = 7 Ом, R3 = 3 Ом. Чему равен заряд на правой обкладке конденсатора?

Р е ш е н и е. Участок цепи, в котором находится конденсатор, разомкнут, и ток через резистор R3 не идёт.

Разность потенциалов между пластинами конденсатора равна падению напряжения на резисторе R2: U = IR2.

Сила тока, идущего по цепи, согласно закону Ома равна

Заряд на обкладках конденсатора

Заряд на обкладках конденсатора

На правой обкладке конденсатора накопится отрицательный заряд, так как она подключена к отрицательному полюсу источника.

Задача 6. Определите параметры источника тока, если известно, что максимальная мощность, равная 40 Вт, выделяется при подключении резистора сопротивлением 10 Ом.

Р е ш е н и е. Максимальная мощность выделяется при равенстве внешнего и внутреннего сопротивлений, следовательно, R = r = 10 Ом.

Мощность определяется формулой Р = I 2 R, или с учётом закона Ома:

Мощность определяется формулой

Тогда ЭДС источника

Тогда ЭДС источника

Задачи для самостоятельного решения

1. За некоторый промежуток времени электрическая плитка, включённая в сеть с постоянным напряжением, выделила количество теплоты Q. Какое количество теплоты выделят за то же время две такие плитки, включённые в ту же сеть последовательно? параллельно? Изменение сопротивления спирали в зависимости от температуры не учитывать.

2. Чему равно напряжение на клеммах гальванического элемента с ЭДС, равной Ε, если цепь разомкнута?

3. Чему равна сила тока при коротком замыкании аккумулятора с ЭДС Ε = 12 В и внутренним сопротивлением r = 0,01 Ом?

4. Батарейка для карманного фонаря замкнута на резистор переменного сопротивления. При сопротивлении резистора, равном 1,65 Ом, напряжение на нём равно 3,30 В, а при сопротивлении, равном 3,50 Ом, напряжение равно 3,50 В. Определите ЭДС и внутреннее сопротивление батарейки.

5. Источники тока с ЭДС 4,50 В и 1,50 В и внутренними сопротивлениями 1,50 Ом и 0,50 Ом, соединённые, как показано на рисунке (15.13), питают лампу от карманного фонаря. Какую мощность потребляет лампа, если известно, что сопротивление её нити в нагретом состоянии равно 23 Ом?

6. Замкнутая цепь питается от источника с ЭДС Ε = 6 В и внутренним сопротивлением 0,1 Ом. Постройте графики зависимости силы тока в цепи, напряжения на зажимах источника и мощности от сопротивления внешнего участка.

7. Два элемента, имеющие одинаковые ЭДС по 4,1 В и одинаковые внутренние сопротивления по 4 Ом, соединены одноимёнными полюсами, от которых сделаны выводы, так что получилась батарейка. Какую ЭДС и какое внутреннее сопротивление должен иметь элемент, которым можно было бы заменить такую батарейку?

Образцы заданий ЕГЭ

C1. Резисторы поочерёдно подключают к источнику постоянного тока. Сопротивления резисторов равны соответственно 3 Ом и 12 Ом. Мощность тока в резисторах одинакова. Чему равно внутреннее сопротивление источника тока?

C2. ЭДС источника постоянного тока Ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключённом к источнику, Р = 0,75 Вт. Чему равна сила тока в цепи?

C3. Электрическая цепь состоит из источника тока и реостата. ЭДС источника б В, его внутреннее сопротивление r = 2 Ом. Сопротивление реостата можно изменять в пределах от 1 до 5 Ом. Чему равна максимальная мощность, выделяемая на реостате?

C4. К однородному медному цилиндрическому проводнику длиной 10 м приложили разность потенциалов 1 В. Определите промежуток времени, в течение которого температура проводника повысится на 10 К. Изменением сопротивления проводника и рассеянием тепла при его нагревании можно пренебречь. Плотность меди 8900 кг/м 3 , удельное сопротивление меди 1,7 • 10 -8 Ом • м, удельная теплоёмкость меди 380 Дж/(кг • К).

Повторите материал главы 15 по следующему плану

1. Выпишите основные понятия и физические величины и дайте им определение.

2. Сформулируйте законы и запишите основные формулы.

3. Укажите единицы физических величин и их выражение через основные единицы СИ.

4. Опишите основные опыты, подтверждающие справедливость законов.

«Источники постоянного тока и их применение»

1. Первые источники тока — химические источники.

2. Фотоэлектрический эффект. Фотоэлементы.

3. Термоэлектрический эффект. Термоэлементы.

4. Применение источников постоянного тока в современной технике.

«Экспериментальная проверка закона Ома для полной цепи»

«Создание экспериментальной установки для исследования тепловых действий тока»

Источник



§ 107. Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

При решении задач, связанных с расчётом работы и мощности тока, надо применять формулы (15.13) и (15.15).

Для определения силы тока в замкнутой цепи надо использовать закон Ома для полной цепи, а в случае нескольких источников правильно определить суммарную ЭДС.

Задача 1. Аккумулятор с ЭДС Ε = 6,0 В и внутренним сопротивлением r — 0,1 Ом питает внешнюю цепь с сопротивлением R = 12,4 Ом. Какое количество теплоты Q выделится во всей цепи за время t = 10 мин?

Р е ш е н и е. Согласно закону Ома для замкнутой цепи сила тока в цепи равна Количество теплоты, выделившейся на внешнем участке цепи, Q1 = I 2 Rt, на внутреннем — Q2 = I 2 rt. Полное количество теплоты

Полное количество теплоты

Задача 2. Разность потенциалов в сети зарядной станции равна 20 В. Внутреннее сопротивление аккумулятора, поставленного на зарядку, равно 0,8 Ом; в начальный момент времени его остаточная ЭДС равна 12 В. Какая мощность будет расходоваться станцией на зарядку аккумулятора при этих условиях? Какая часть этой мощности будет расходоваться на нагревание аккумулятора?

Р е ш е н и е. При зарядке аккумулятора зарядное устройство и аккумулятор соединены разноимёнными полюсами навстречу друг другу. Сила тока, идущего через аккумулятор, I = (U — Ε)/R. Мощность, расходуемая станцией:

Р1 = UI = U(U — Ε)/R = 200 Вт.

Мощность, расходуемая на нагревание аккумулятора:

Мощность, расходуемая на нагревание аккумулятора

Задача 3. При подключении вольтметра сопротивлением RV = 200 Ом непосредственно к зажимам источника он показывает U = 20 В. Если же этот источник замкнуть на резистор сопротивлением R = 8 Ом, то сила тока в цепи I2 = 0,5 А. Определите ЭДС и внутреннее сопротивление источника.

Р е ш е н и е. По закону Ома для полной цепи в первом случае сила тока во втором случае Показания вольтметра — падение напряжения на его внутреннем сопротивлении, т. е. U = I1RV. Из соотношения I1(RV + r) = I2(R + r) найдём внутреннее сопротивление источника:

Внутреннее сопротивление источника

Для ЭДС источника запишем: Ε = I2(R + r) = 24 В.

Задача 4. Определите силу тока короткого замыкания для источника, который при силе тока в цепи I1 = 10 А имеет полезную мощность Р1 = 500 Вт, а при силе тока I2 = 5 А — мощность Р2 = 375 Вт.

Р е ш е н и е. Сила тока короткого замыкания Полезная мощность Р = IU, где U — напряжение на зажимах источника, или падение напряжения на внешнем участке цепи. Напряжения на зажимах источника в первом и во втором случаях

Напряжения на зажимах источника в первом и во втором случаях

Вычтем почленно из первого выражения второе:

Вычтем почленно из первого выражения второе

откуда определим

ЭДС источника тока

ЭДС источника тока

Окончательно для силы тока короткого замыкания

Силы тока короткого замыкания

Конденсатор ёмкостью 2 мкФ включён в цепь содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом

Задача 5. Конденсатор ёмкостью 2 мкФ включён в цепь (рис. 15.12), содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом. Сопротивления резисторов R1 = 4 Ом, R2 = 7 Ом, R3 = 3 Ом. Чему равен заряд на правой обкладке конденсатора?

Р е ш е н и е. Участок цепи, в котором находится конденсатор, разомкнут, и ток через резистор R3 не идёт.

Разность потенциалов между пластинами конденсатора равна падению напряжения на резисторе R2: U = IR2.

Сила тока, идущего по цепи, согласно закону Ома равна

Заряд на обкладках конденсатора

Заряд на обкладках конденсатора

На правой обкладке конденсатора накопится отрицательный заряд, так как она подключена к отрицательному полюсу источника.

Задача 6. Определите параметры источника тока, если известно, что максимальная мощность, равная 40 Вт, выделяется при подключении резистора сопротивлением 10 Ом.

Р е ш е н и е. Максимальная мощность выделяется при равенстве внешнего и внутреннего сопротивлений, следовательно, R = r = 10 Ом.

Мощность определяется формулой Р = I 2 R, или с учётом закона Ома:

Мощность определяется формулой

Тогда ЭДС источника

Тогда ЭДС источника

Задачи для самостоятельного решения

1. За некоторый промежуток времени электрическая плитка, включённая в сеть с постоянным напряжением, выделила количество теплоты Q. Какое количество теплоты выделят за то же время две такие плитки, включённые в ту же сеть последовательно? параллельно? Изменение сопротивления спирали в зависимости от температуры не учитывать.

2. Чему равно напряжение на клеммах гальванического элемента с ЭДС, равной Ε, если цепь разомкнута?

3. Чему равна сила тока при коротком замыкании аккумулятора с ЭДС Ε = 12 В и внутренним сопротивлением r = 0,01 Ом?

4. Батарейка для карманного фонаря замкнута на резистор переменного сопротивления. При сопротивлении резистора, равном 1,65 Ом, напряжение на нём равно 3,30 В, а при сопротивлении, равном 3,50 Ом, напряжение равно 3,50 В. Определите ЭДС и внутреннее сопротивление батарейки.

5. Источники тока с ЭДС 4,50 В и 1,50 В и внутренними сопротивлениями 1,50 Ом и 0,50 Ом, соединённые, как показано на рисунке (15.13), питают лампу от карманного фонаря. Какую мощность потребляет лампа, если известно, что сопротивление её нити в нагретом состоянии равно 23 Ом?

6. Замкнутая цепь питается от источника с ЭДС Ε = 6 В и внутренним сопротивлением 0,1 Ом. Постройте графики зависимости силы тока в цепи, напряжения на зажимах источника и мощности от сопротивления внешнего участка.

7. Два элемента, имеющие одинаковые ЭДС по 4,1 В и одинаковые внутренние сопротивления по 4 Ом, соединены одноимёнными полюсами, от которых сделаны выводы, так что получилась батарейка. Какую ЭДС и какое внутреннее сопротивление должен иметь элемент, которым можно было бы заменить такую батарейку?

Образцы заданий ЕГЭ

C1. Резисторы поочерёдно подключают к источнику постоянного тока. Сопротивления резисторов равны соответственно 3 Ом и 12 Ом. Мощность тока в резисторах одинакова. Чему равно внутреннее сопротивление источника тока?

C2. ЭДС источника постоянного тока Ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключённом к источнику, Р = 0,75 Вт. Чему равна сила тока в цепи?

C3. Электрическая цепь состоит из источника тока и реостата. ЭДС источника б В, его внутреннее сопротивление r = 2 Ом. Сопротивление реостата можно изменять в пределах от 1 до 5 Ом. Чему равна максимальная мощность, выделяемая на реостате?

C4. К однородному медному цилиндрическому проводнику длиной 10 м приложили разность потенциалов 1 В. Определите промежуток времени, в течение которого температура проводника повысится на 10 К. Изменением сопротивления проводника и рассеянием тепла при его нагревании можно пренебречь. Плотность меди 8900 кг/м 3 , удельное сопротивление меди 1,7 • 10 -8 Ом • м, удельная теплоёмкость меди 380 Дж/(кг • К).

Повторите материал главы 15 по следующему плану

1. Выпишите основные понятия и физические величины и дайте им определение.

2. Сформулируйте законы и запишите основные формулы.

3. Укажите единицы физических величин и их выражение через основные единицы СИ.

4. Опишите основные опыты, подтверждающие справедливость законов.

«Источники постоянного тока и их применение»

1. Первые источники тока — химические источники.

2. Фотоэлектрический эффект. Фотоэлементы.

3. Термоэлектрический эффект. Термоэлементы.

4. Применение источников постоянного тока в современной технике.

«Экспериментальная проверка закона Ома для полной цепи»

«Создание экспериментальной установки для исследования тепловых действий тока»

Источник

Сила тока i в цепи состоящей из термопары с сопротивлением r1 4 ом

В настоящий момент в базе находятся следующие задачи(номера задач соответствуют задачнику). Задачи, помеченные светло-зеленым цветом, можно купить. Базовая цена 30 руб. Подробней об оплате

Ч_20-001. Сила тока I в металлическом проводнике равна 0,8 А, чтение S проводника 4 мм2. Принимая, что в каждом кубическом сантиметре металла содержится n=2,5 .1022 свободных электронов определить среднюю скорость (о) их упорядоченного движения.

Ч_20-002. Определить среднюю скорость упорядоченного движения электронов в медном проводнике при силе тока 7=10 А и сечении S проводника, равном 1 мм2. Принять, что на каждый атом меди приходится два электрона проводимости.

Ч_20-003. Плотность тока j в алюминиевом проводе равна 1 А/мм2. Найти среднюю скорость упорядоченного движения электрон предполагая, что число свободных электронов в 1 см3 алюминия равно числу атомов.

Ч_20-004. Плотность тока j в медном проводнике равна 3 А/мм2. Найти напряженность Е электрического поля в проводнике.

Ч_20-005. В медном проводнике длиной l=2м и площадью 5 поперечного сечения, равной 0,4 мм2, идет ток. При этом ежесекундно выделяется количество теплоты Q=0,35 Дж. Сколько электронов N проходит за 1 с через поперечное сечение этого проводника?

Ч_20-006. В медном проводнике объемом V=6 см3 при прохождении по нему постоянного тока за время t=l мин выделилось количество теплоты Q=216 Дж. Вычислить напряженность Е электрического поля в проводнике.

Ч_20-007. Металлический проводник движется с ускорением a=100 м/с2. Используя модель свободных электронов, определить напряженность Е электрического поля в проводнике.

Ч_20-008. Медный диск радиусом R=0,5 м равномерно вращается (? = 104 рад/с) относительно оси, перпендикулярной плоскостидиска и проходящей через его центр. Определить разность потенциала U между центром диска и его крайними точками.

Ч_20-009. Металлический стержень движется вдоль своей оси со скоростью v=2QQ м/с. Определить заряд Q, который протечет через гальванометр, подключаемый к концам стержня, при резком его торможении, если длина l стержня равна 10 м, а сопротивление R всей цепи (включая цепь гальванометра) равно 10 мОм.

Ч_20-010. Удельная проводимость у металла равна 10 МСм/м. Вычислить среднюю длину свободного пробега электронов в металле, если концентрация п свободных электронов равна 1028 м-3. Среднюю скорость и хаотического движения электронов принять равной 1 Мм/с.

Ч_20-011. Исходя из модели свободных электронов, определить число z соударений, которые испытывает электрон за время t=1 с, находясь в металле, если концентрация п свободных электронов равна 1029 м-3. Удельную проводимость у металла принять равной 10 МСм/м.

Ч_20-012. Исходя из классической теории электропроводности металлов, определить среднюю кинетическую энергию электронов в металле, если отношение ?/? теплопроводности к удельной проводимости равно 6,7 .10 -6 В2/К.

Ч_20-013. Определить объемную плотность тепловой мощности ? в металлическом проводнике, если плотность тока j=10 А/мм2. Напряженность Е электрического поля в проводнике равна 1 мВ/м.

Ч_20-014. Термопара медь — константан с сопротивлением R1= 5 Ом присоединена к гальванометру, сопротивление R2 которого равно 100 Ом. Один спай термопары погружен в тающий лед, другой — в горячую жидкость. Сила тока I в цепи равна 37 мкА. Постоянная термопары ? = 43 мкВ/К. Определить температуру t жидкости.

Ч_20-015. Сила тока I в цепи, состоящей из термопары с сопротивлением R1=4 Ом и гальванометра с сопротивлением R3=80 Ом, равна 26 мкА при разности температур ?t спаев, равной 50 °С. Определить постоянную k термопары.

Ч_20-016. При силе тока I=5 А за время t =10 мин в электролитической ванне выделилось m=1,02 г двухвалентного металла. Определить его относительную атомную массу Аr .

Ч_20-017. Две электролитические ванны соединены последовательно. В первой ванне выделилось m1=3,9 г цинка, во второй за то же время m2=2,24 г железа. Цинк двухвалентен. Определить валентность железа.

Ч_20-018. Электролитическая ванна с раствором медного купороса присоединена к батарее аккумуляторов с ЭДС E=4 В и внутренним сопротивлением r=0,1 Ом. Определить массу т меди, выделившейся при электролизе за время t=10 мин, если ЭДС поляризации En= 1,5 В и сопротивление R раствора равно 0,5 Ом. Медь двухвалентна.

Ч_20-019. Определить толщину h слоя меди, выделившейся за время t=5 ч при электролизе медного купороса, если плотность тока =80 А/м2.

Ч_20-020. Сила тока, проходящего через электролитическую ванну с раствором медного купороса, равномерно возрастает в течение времени ?t=20 с от I0=0 до I=2 А. Найти массу т меди, выделившейся за это время на катоде ванны.

Ч_20-021. В электролитической ванне через раствор прошел заряд Q=193 кКл. При этом на катоде выделился металл количеством вещества ?=1 моль. Определить валентность Z металла.

Ч_20-022. Определить количество вещества ? и число атомов N двухвалентного металла, отложившегося на катоде электролитической ванны, если через раствор в течение времени t=5 мин шел ток си I=2 А.

Ч_20-023. Сколько атомов двухвалентного металла выделится 1 см2 поверхности электрода за время t=5 мин при плотности j=10 А/м2?

Ч_20-024. Энергия ионизации атома водорода Ei =2,18 .10 -18 Дж. Определить потенциал ионизации Ui водорода.

Ч_20-025. Какой наименьшей скоростью ?mln должен обладать электрон, чтобы ионизировать атом азота, если потенциал ионизации Ui азота равен 14,5 В?

Ч_20-026. Какова должна быть температура Т атомарного водорода чтобы средняя кинетическая энергия поступательного движения атомов была достаточна для ионизации путем соударений? Потенциал ионизации Ui атомарного водорода равен 13,6 В.

Ч_20-027. Посередине между электродами ионизационной камеры пролетела ? — частица, двигаясь параллельно электродам, и образовала вала на своем пути цепочку ионов. Спустя какое время после про та ? — частицы ионы дойдут до электродов, если расстояние d между электродами равно 4 см, разность потенциалов U=5 кВ и подвижность ионов обоих знаков в среднем b=2 см2/(В . с)?

Ч_20-028. Азот ионизируется рентгеновским излучением. Определить проводимость G азота, если в каждом кубическом сантиме газа находится в условиях равновесия п0=107 пар ионов. Подвижность положительных ионов b+ = 1,27 см2/(В . с) и отрицательных b_ = 1,81 см2/(В . с).

Ч_20-029. Воздух между плоскими электродами ионизационной меры ионизируется рентгеновским излучением. Сила тока I, текущего через камеру, равна 1,2 мкА. Площадь S каждого электрода равна 300 см2, расстояние между ними d=2 см, разность потенциалов U=100 В. Найти концентрацию n пар ионов между пластинами, если ток далек от насыщения. Подвижность положительных ионов b+ = 1,4 см2/(В · с)и отрицательных b_ = 1,9 см2/(В · с). Заряд каждого иона равен элементарному заряду.

Ч_20-030. Объем V газа, заключенного между электродами ионизационной камеры, равен 0,5 л. Газ ионизируется рентгеновским излучением. Сила тока насыщения Iнас=4 нА. Сколько пар ионов образуется в 1 с в 1 см3 газа? Заряд каждого иона равен элементарному заряду.

Ч_20-031. Найти силу тока насыщения между пластинами конденсатора, если под действием ионизатора в каждом кубическом сантиметре пространства между пластинами конденсатора ежесекундно образуется n0= 108 пар ионов, каждый из которых несет один элементарный заряд. Расстояние d между пластинами конденсатора равно 1 см, площадь S пластины равна 100 см2.

Ч_20-032. В ионизационной камере, расстояние d между плоскими электродами которой равно 5 см, проходит ток насыщения плотностью j=16 мкА/м2. Определить число п пар ионов, образующихся каждом кубическом сантиметре пространства камеры в 1 с.

Источник

Читайте также:  Холодная вода проводит ток