Меню

Схема регулировки мощности по постоянному току

Регулятор мощности на симисторе и тиристоре

Принцип действия регулятора

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

  • Регулятор мощности на симисторе
  • Напряжение на тиристоре
    • Простая схема
    • С генератором на основе логики
    • На основе транзистора КТ117

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

Схема регулятора мощности на симисторе

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Как работает регулятор

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Как регулируется выходная мощность в регуляторах

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Схемное обозначение тиристора, симистора и динистора

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Простейшая схема регулятора мощности на тиристоре

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Как регулируется выходная мощность в регуляторах

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Регулятор мощности на тиристоре с мягкой регулировкой

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Осциллограмма при наличии выпрямительного моста

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

Регулятор мощности с генератором на КТ117

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Источник

Как регулировать мощность переменного тока

Решил как-то отец собрать для дачи некое устройство, в котором, по его заверению, можно будет варить сыр. Устройство сие вид имело могучий и представляло из себя железный короб, подозрительно напоминающий старую стиральную машинку. Внутрь короба (все также добротно!) были вмонтированы три тэна по 1700 Ватт каждый. В общем сыра должно было хватить на небольшой посёлок.

Изделие (внешне выглядящее как что-то из безумного макса), должно быть весьма технологичным и поддерживать заданную температуру в максимально узких пределах. Для этого рядом появилась ещё одна коробка с симисторами, к которым подключались ТЭНы и схема, выдающая высокий уровень при переходе синусоиды через ноль. А у меня появился интересный проект.

Итак нам нужно выходить на заданную температуру и поддерживать её, с этим должен справляться алгоритм ПИД регулятора. Глубоко вдаваться в его работу не буду, скажу лишь что он получает на вход текущую ошибку, а на выходе выдает какое-то число в заданных пределах. У меня таким числом будет мощность выдаваемая на ТЭН, хотя в принципе, это может быть любой инерционный процесс, например обороты двигателя. Что важно для ПИД регулятора, это чтобы выходная величина производила воздействие линейно. Поэтому попробуем разобраться в способах регулировки мощности и их линейности.

Как вообще регулируется мощность?

Мощность — это произведение силы тока на напряжение. Если представить это произведение графически, то для постоянного тока, это будет площадь прямоугольника со сторонами равными напряжению и току

Так как при постоянном сопротивлении и напряжении ток тоже будет постоянным, то заменим ось тока на ось времени. Сопротивление я беру постоянным для объяснения принципа регулирования.

Тогда при заданном напряжении (12 В) и сопротивлении в 12 Ом, по закону Ома: I=U/R, получаем ток равный 1 А, и соответственно мощность за единицу времени будет равна 12 Вт. При другом сопротивлении мощность, естественно тоже изменится.

Теперь, если мы хотим регулировать мощность за единицу времени, нам нужно как-то изменять площадь фигуры за единицу времени. Самым чистым способом будет просто изменять напряжение, тогда и мощность будет пропорционально изменяться. Но контроллер, как и любые цифровые устройства, не умеет плавно изменять напряжение на ножках, он может либо «поднимать» их до высокого уровня, либо «опускать» до низкого уровня. Этот недостаток он компенсирует скоростью, даже самый дохленький современный МК может работать на частотах в миллионы тактов в секунду. Чтобы регулировать мощность, контроллер будет очень быстро «дрыгать» ножкой, тем самым изменяя результирующая площадь импульса за единицу времени.

На этом принципе устроена широтно-импульсная модуляция, она же ШИМ. Изменяя время (ширину) импульса за период мы изменяем выдаваемую мощность. На рисунке выше, показано два периода ШИМа. Каждый период имеет отношение площади импульса к площади всего периода 0.5, те половину времени периода контроллер выдает высокий уровень сигнала, другую половину низкий. Отношение времени высокого уровня сигнала к времени низкого называется скважностью. Красная линия на графике отражает результирующую мощность за единицу времени, по ней видно что при скважности 0.5 мощность также упала на половину (с 12 до 6 Вт). Хорошая новость состоит в том, что, ШИМ в контроллерах реализован аппаратно. Так что для регулирования чего-то достаточно его запустить и, по необходимости, изменять скважность.

Читайте также:  Сварка переменного тока для дома

Для постоянного тока, режим ШИМа оптимален, причем чем более инерционный прибор мы к нему подключаем, тем меньшую частоту ШИМа можно использовать. Для большого ТЭНа достаточно чуть ли не одного герца, а вот для светодиодов лучше использовать частоту побольше. Кстати частота ШИМа в подсветке экрана ноутбука, зачастую оказывается чуть ли не решающим фактором при покупке, так как, при слишком низкой частоте, глаза будут быстро уставать.

Если попробовать провернуть трюк с ШИМом для переменного напряжения, мы увидим что все сломалось и мощность перестала регулироваться линейно

одинаковые промежутки времени стали давать нам разную площадь, а значит разную мощность. Однако, если разбить полученные отрезки на на ещё более мелкие, то процентное соотношение ширины импульса к ширине кусочка будет выравниваться.

Если мы возьмем равный процент выдаваемой мощности от каждого кусочка, в результате мы получим такой же процент, от мощности всей волны, а на выходе мы получим линейный регулятор мощности для переменного тока. Причем чем большую частоту будет иметь ШИМа, тем на большее количество кусочков он разобьет синусоиду, а значит мы получим большую линейность.

Это было бы решением всех проблем, но в моем случае устройством коммутировавшим нагрузку был не быстрый транзистор, а симистор — медленный прибор, с максимальными рабочими частотами в пределах нескольких сотен герц, к тому же симистор можно только открыть, закроется он сам при переходе через ноль. На таких частотах управлять переменным напряжением которое имеет частоту 50 Гц, линейно не получится. Поэтому здесь нужно использовать какой-то другой подход и как раз для него, помимо симисторов, была установлена схема перехода через ноль.

В случае с симисторами лучше разбить синусоиду на куски с одинаковыми площадями и записать время каждого такого кусочка в таблицу. Тогда каждое последующее значение из таблицы будет линейно увеличивать мощность.

На графике выше полуволна синусоиды разбита на части разные по времени, но имеющие одинаковую площадь, а значит несущие в себе одинаковую мощность. Все что нам останется сделать это загрузить таблицу с временными интервалам в наш котроллер, синхронизировать какой-то из его таймеров с частотой синусоиды, для этого используется схема перехода через ноль, и просто брать из таблички нужное значение, в течении которого будет высокий уровень. Суть метода похожа на ШИМ, но немного доработанный и синхронизированный с источником переменного напряжения.

Расчёт таблицы мощности

Теперь можно перейти непосредственно к расчёту.

Изначально задача заключается в том чтобы разбить синусоиду на нужное нам количество кусочков, каждый из которых будет иметь одинаковую площадь. На этом моменте, обычно проступает холодный пот, так-как площадь под графиком это и есть геометрическое определение интеграла. Соответственно нам нужно будет взять интеграл от функции при этом определить такие пределы интегрирования, которые будут давать одинаковый результат. Затем (как будто расчёта интегралов мало!) полученные пределы нужно будет перевести во время задержки (время в течении которого будет сохранятся высокий уровень). После чего полученное время перевести в понятное для контроллера число — количество тиков таймера. Звучит страшно, а по факту сейчас разберёмся:

Во первых сама функция — как было написано выше мощность это произведение тока на напряжение, для переменного тока (без сдвига фаз), это утверждение также верно, но, так-как и ток и напряжение меняются со временем P=IU превращается в P=I*sin(t) * U*sin(t). Так как амплитуда синусоиды нас сильно не волнует, уравнение вырождается до P=sin^2(t).

Неопределённый интеграл от квадрата синуса

Теперь нужно подобрать пределы для определенных интегралов. Выберем, насколько частей мы хотим разбить нашу синусоиду: я выбрал сто, чтобы можно было регулировать мощность с шагом в 1%.

Итак мы нашли чему будет равен неопределённый интеграл и даже выбрали шаг. Теперь нужно подобрать пределы интегрирования. Смысл их подбора заключается в том, чтобы значение определенного интеграла было постоянным при их смене. Напомню, что неопределенный интеграл это формула, а определённый вполне конкретное число. Определённый интеграл считается по формуле:

То есть мы берем неопределённый интеграл, подставляем в него верхнее число, затем нижнее, и вычитаем второе из первого.

Наш неопределённый интеграл является смешанной тригонометрической функцией, а значит не имеет общего аналитического решения. Чаще всего такие функции решаются либо числовыми, либо графическими методами. Графический метода заключается в том что мы строим графики для правой и левой части уравнения их пересечение будет решением уравнения. На рисунке показано решение уравнения для 0.2

Наряду с графическим методом можно использовать численный, то есть подбор решения. Будем подставлять в неопределённый интеграл числа до тех пор пока не найдём решение). Можно использовать лист и бумажку чтобы попрактиковаться в математике, можно онлайн калькулятор, я же буду использовать Python и библиотеки numpy:

Отлично мы получили массив чисел (пределов интегрирования!), валидность этих чисел можно проверить подставив их в интеграл. В результате должна получится площадь равная выбранному шагу! Теперь, если подставить полученные числа на график мощности, должна получится следующая картина:

Если все сошлось, то можно двигаться дальше и задать получившимся числам размерность времени, потому что сейчас они в радианах. Чтобы это сделать нужно выяснить угловую скорость, для частоты сети, то есть количество радиан в секунду.

w=2πf=2π*50= 314 рад/с

Тогда узнаем сколько сколько длится одна радиана

T=1/f = 1/314 = 0.00318309 с/рад

Теперь, значения задержек в радианах, превратим во время, умножив каждое значение на период радианы (T). Проверим ход своей мысли: действительно-ли получится время задержки, если умножить задержку, на период? Задержка имеет размерность радиан, период — секунд за радиану, мы хотим их перемножить. Тогда рад * ( сек / рад ) = сек. Мы получили время, а значит ход мыслей должен быть верным.

Для расчётов я опять предпочту python:

На этом моменте мы получили универсальную таблицу задержек, теперь необходимо конвертировать её специально под микроконтроллер.

Расчёт таймера МК и перевод таблицы

Время необходимо перевести в понятную для МК величину — количество переполнений таймера. Но сначала необходимо определится с частотой таймера: чем выше частота, тем точнее он будет отмерять время, но с другой стороны, тем меньше времени будет оставаться на выполнение остальной программы. Здесь необходимо найти золотую середину.

Для определения минимально допустимой частоты таймера, надо найти числа в массиве с минимальной разностью между ними. Разность тем меньше, чем ближе в максимуму синусоиды мы двигаемся. Тогда возьмем задержку при которой синусоида достигает единицы и число перед ним, после чего найдем их разность:

5 мс — 4.9363 мс = 0.0636 мс

Получившееся число является максимально допустимым периодом между прерываниями таймера, тогда через него найдём минимально допустимую частоту

1 / 0.0636 = 15 КГц

Значит для заданной точности в 1% будет достаточно таймера с частотой 15КГц. Частота МК составляет 16 МГц, значит между прерываниями будет 1000 тактов процессора, этого достаточно для выполнения остальной части программы, так что можно смело настраивать таймер на заданную частоту.

Для настройки таймера на определенную частоту, не кратную тактирующей используется режим таймера CTC — Clear Timer on Compare. В этом режиме таймер досчитывает до заданного числа и сбрасывается, после чего операция повторяется. Число при котором будет происходить совпадение считается по формуле

Число = Тактовая частота МК / предделитель таймера / выбранная частота

Частота выбрана, теперь нужно перевести таблицу в тики таймера. Делать я это буду опять на Python

В общем-то на этом весь расчёт окончен, остается только отзеркалить получившийся массив для второй половины полуволны и загрузить в МК. Далее по прерыванию от синхроимпульса, нужно подать низкий уровень, на ножку управления симистором, запустить таймер и считать его переполнения (совпадения, тк. у нас режим CTC). Как только количество переполнений достигнет нужного числа из таблички, подаем высокий уровень на управляющую ножку. На этом линейный регулятор мощности переменного напряжения готов!

Заключение

Надеюсь статья была понятна и её было интересно читать. В дополнение хотелось бы сказать, сигнал перехода через ноль не приходит идеально вовремя, поэтому может потребоваться дополнительная коррекция, чтобы это исправить.

Код расчетов на python

Также, если кому-то будет интересно, могу поделится исходником готового регулятора для ардуино.

Источник

Регулятор тока своими руками: схема и инструкция. Регулятор постоянного тока

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

регулятор тока

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

регулятор постоянного тока

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Читайте также:  Проверить есть ток или нет прибор

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

тиристорный регулятор тока

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

схема регулятора тока

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

регулятор тока для зарядного устройства

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

регулятор переменного тока

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

регулятор тока своими руками

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

Источник



Устройство регулятора мощности своими руками

Регулятор мощности 12 вольт своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

Хема регулятора мощности на симисторе

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

 регулятор мощности на тиристоре

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

 регулятор мощности для паяльника своими руками

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Читайте также:  Изменить направление индукции тока

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Регулятор мощности на симисторе

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

 регулятор напряжения фазовый

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими руками

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими руками

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Источник

Схема регулировки мощности по постоянному току

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Три схемы простых регуляторов тока

    В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

    Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

    Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

    Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

    Стабилизаторы тока, шунты

    Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

    Простой стабилизатор тока на транзисторах, схема

    Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

    Простой стабилизатор тока на транзисторахПростой стабилизатор тока на транзисторах

    Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

    Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

    Простой стабилизатор тока на lm358, схема

    Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

    Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

    Простой стабилизатор тока на lm358Простой стабилизатор тока на lm358

    Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

    Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

    Стабилизатор тока на LM317

    Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

    Стабилизатор тока на LM317, шунтСтабилизатор тока на LM317, шунт

    Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

    Стабилизатор тока на LM317Стабилизатор тока на LM317

    Источник