Меню

Способы компенсации реактивной мощности в цепях переменного тока

Что такое реактивная мощность и как её рассчитать?

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Что такое реактивная мощность?

Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.

Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.

При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.

На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.

К устройствам с индуктивными нагрузками относятся:

  • электромоторы;
  • дроссели;
  • трансформаторы;
  • электромагнитные реле и другие устройства, содержащие обмотки.

Ёмкостными сопротивлениями обладают конденсаторы.

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

Сдвиг фаз индуктивной нагрузкой

Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.

Коэффициент мощности

Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Формула модуля вектора S

Отсюда можно найти реактивную составляющую:

Реактивная составляющаяРеактивная составляющая

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.

Если угол сдвига фаз принимает нулевое значение, то cos φ = 1, а это значит что P = S, то есть полная мощность состоит только из активной мощности, а реактивность отсутствует. При сдвиге фаз на угол π/2 , cos φ = 0, откуда следует, что в цепи господствуют только реактивные токи (на практике такая ситуация не возникает).

Из этого можно сделать вывод: чем ближе к 1 коэффициент Pf , тем эффективнее используется ток. Например, для синхронных генераторов приемлемым считается коэффициент от 0,75 до 0,85.

Формулы

Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.

Активную составляющую находят по формуле: P = U*I×cosφ. Тогда

Формула полной мощности

Зная коэффициент Pf (cos φ), мы можем рассчитать номинальную мощность потребителя тока по его номинальному напряжению, умноженному на значение силы потребляемого тока.

Способы компенсации

Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.

Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.

На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.

Устройство компенсации

Рис. 3. Устройство компенсации

Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).

Компенсация реактивной мощности с помощью конденсаторов

Рис. 4. Компенсация реактивной мощности с помощью конденсаторов

Читайте также:  Назначение щеток в генераторе постоянного тока

Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

  • электрочайник (Pf = 1);
  • лампы накаливания (Pf = 1);
  • электроплита (Pf = 1) и другие нагревательные приборы;

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.

Попутно вы решите следующие вопросы:

  • уменьшение нагрузок на индуктивные элементы и на проводку;
  • улучшение качества тока, способствующего стабильной работе электронных устройств;
  • понижение уровня высших гармоник в бытовой сети.

Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.

Видео в тему

Источник

Компенсация реактивной мощности

Электрическая мощность, потребляемая промышленными предприятиями и жилыми домами, бывает двух видов. Активная – затрачивается на выполнение полезной, нужной потребителю работы. Реактивная – увеличивает нагрузку на сеть и приводит к дополнительным расходам на электроэнергию.

Треугольник мощностей

Определение

Реактивная мощность не выполняет полезной работы. Она обусловлена наличием у потребителя индуктивной или ёмкостной составляющей нагрузки. На предприятиях реактивная мощность возникает при работе электрических двигателей, трансформаторов или ламп ДРЛ. В домашних условиях это моторы пылесосов, стиральных машин или компрессоров холодильников. На корпусе данных агрегатов часто можно увидеть параметр cosф, называемый коэффициентом мощности. Он количественно характеризует долю реактива.

Обратите внимание! Cosф – параметр крайне нестабильный. Он способен меняться в широком диапазоне с течением года и временем суток. Также коэффициент мощности тесно связан с будними и выходными днями.

Бирка на двигателе

Все перечисленное служит примером источников индуктивной составляющей. Гораздо реже встречается ёмкостная. К её примерам относятся мощные импульсные блоки питания и всё, что во входной части содержит конденсаторы.

Физика процесса

Для понимания процесса образования реактивной мощности следует заострить внимание на двух фактах:

  1. Природа переменного тока такова, что он периодически изменяет своё направление. Т.е. «+» и «-» в розетке переставляются местами 50 раз в секунду. Происходит это не рывками, а плавно по синусоидальному закону. Смена направления тока чем-то схожа с колебаниями качель.
  2. На создание электромагнитного поля, например, обмоткой трансформатора, требуется некоторое время.

В итоге получается следующая картина. Напряжение на выводах обмотки достигает своего пикового значения. Ток из-за индуктивного характера потребителя всё никак не может выйти на максимум. Если нагрузка ёмкостная, то эффект обратный: ток опережает напряжение.

Такое рассогласование источника и потребителя приводит к ощутимым потерям полезной мощности. Поэтому для борьбы с этими нежелательными свойствами индуктивностей и ёмкостей используют специальные устройства компенсации реактивной мощности (УКРМ).

Для чего компенсация реактивной мощности

Компенсировать реактивную составляющую мощности необходимо для повышения эффективности энергосистемы и снижения нагрузки на питающие кабеля и коммутирующие аппараты.

На производстве в основном преобладают потребители индуктивного характера. Для компенсации реактивной мощности, возникающей из-за их работы, чаще всего применяют конденсаторные установки. Их использование позволяет добиться следующих положительных эффектов:

  • снизить нагрузку на сеть, избавив её от бесполезных реактивных токов;
  • ощутимо уменьшить счета на электроэнергию;
  • повысить качество напряжения за счёт устранения помех, шумов и высших гармоник.

Основные компоненты УКРМ

Для компенсации индуктивной составляющей реактивной мощности применяют конденсаторные установки. Иногда их объединяют в целые батареи и оснащают различной коммутирующей аппаратурой. Она необходима для автоматического переключения конденсаторов с целью повышения или понижения конечной ёмкости батареи. Дополнительно требуется к.л. измерительный прибор для отслеживания коэффициента мощности cosф и прочих параметров УКРМ. На сегодняшний день такие контроллеры выполняются на основе микропроцессоров, которые делают всю работу без вмешательства человека.

Конденсаторный компенсатор

Ёмкостная составляющая компенсируется похожим образом. Здесь уже в качестве выравнивающего cosф устройства выступают синхронные двигатели или специальные реакторы (катушки, дроссели). Ёмкостная составляющая свойственна протяжённым кабельным и воздушным линиям, а не самому промышленному оборудованию.

Виды компенсаторов и их принцип действия

Чаще всего в роли компенсирующего устройства применяется либо батареи конденсаторов, либо двигатели. При этом может использоваться как один компенсатор, так и множество подключенных параллельно.

В течение дня баланс мощности в сети может изменяться, на что УКРМ должно реагировать соответствующим образом. С этой точки зрения компенсаторы бывают:

  • нерегулируемые – без возможности переключения составных элементов;
  • автоматические – компенсатор сам отслеживает cosф, производит расчеты и решает, какое количество конденсаторов следует добавить в схему;
  • с ручным управлением – человек сам анализирует cosф по приборам и производит соответствующие переключения.

В зависимости от условий эксплуатации выделяют следующие типы коммутирующих устройств:

  • контакторные – только статические переключения;
  • тиристорные – работа в реальном времени;
  • вакуумные выключатели – для напряжений свыше 1 кВ.

Определение емкости конденсаторов

При проектировании УКРМ следует уделить внимание расчету ёмкости и мощности конденсаторных установок. Важно это по той причине, что в случае неправильного выбора этих параметров установка может нанести электросети больше вреда, чем пользы. Формула для расчета необходимой ёмкости конденсатора имеет следующий вид.

Ёмкость конденсатора

Здесь:

  • C – ёмкость конденсаторной установки, Ф;
  • U – сетевое напряжение, В;
  • f – частота, Гц;
  • Q – реактивная мощность конденсатора, вар;
  • p – 3.14.

Переменная Q, в свою очередь, определяется по следующему выражению.

Читайте также:  Сила ампера максимальна когда проводник с током

Реактивная мощность конденсатора

Где:

  • P – активная мощность потребителя;
  • К – коэффициент, подбираемый из таблицы.

Таблица для расчёта УКРМ

Дополнительная информация. На просторах интернета полно ресурсов, содержащих в себе калькуляторы для онлайн расчета различных параметров компенсаторов.

Компенсаторы реактивной мощности в квартире

Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:

  1. Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
  2. Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
  3. С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.

Cosф бытовых потребителей

Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности. Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.

Эффективность применения конденсаторных установок

История применения метода компенсации реактивной мощности охватывает ещё советский период. Его экономическая эффективность на промышленных предприятиях доказана исследованиями и десятками лет практического использования.

Конденсаторные УКРМ предназначены в основном для компенсации реактивной мощности электрических двигателей. Энергия, потребляемая асинхронными моторами, может доходить до 40 % от всей нагрузки предприятия. Поэтому экономии на двигателях уделяют особое внимание. Масло в огонь подливает и то, что мотор, работающий с номинальной нагрузкой на валу, имеет cosф = 0,75-0,8. Это считается нормой. Однако тот же двигатель без нагрузки имеет гораздо более низкий коэффициент мощности порядка 0,3. Использование УКРМ позволяет повысить cosф до 0,99. Это хороший показатель, ведь, чем ближе этот параметр к единице, тем эффективнее расходуется электроэнергия.

Наличие устройств, компенсирующих реактивную мощность, благотворно сказывается на расходах промышленного предприятия. Помимо этого, уменьшается нагрузка на электрическую систему объекта. Это позволяет снизить сечение и конечную стоимость воздушных и кабельных линий, а также уменьшить долгосрочные затраты на их ремонт и обслуживание.

Видео

Источник



Способы и средства компенсации реактивной мощности в системах электроснабжения

Анонс: Технически корректная концепция средств и способов компенсации реактивной мощности. Активные и пассивные средства компенсации реактивной мощности. Способы компенсации реактивной мощности в системах электроснабжения.

Средства компенсации реактивной мощности – любые устройства и мероприятия, посредством которых можно целенаправленно воздействовать на баланс реактивной мощности в системах электроснабжения, причем и путем уменьшения потребляемой, и увеличения генерации реактивной мощности. Способы компенсации реактивной мощности – системное применение средств по определенным схемам, оптимальным реактивной нагрузке систем электроснабжения.

Средства компенсации реактивной мощности в системах электроснабжения.

Все средства компенсации реактивной мощности в системах электроснабжения условно делят на пассивные и активные, причем реализация пассивных средств приводит к уменьшению объемов потребляемой реактивной мощности, а активные средства генерируют реактивную мощность и интегрируются в электрические сети в соответствии с оптимальным способом компенсации.

Пассивные средства компенсации реактивной мощности.

Типовыми средствами компенсации реактивной мощности, используемыми для разгрузки сети по реактивным токам, сегодня являются:

  • организационно-технические мероприятия по оптимизации административных, производственных и технологических процессов, позволяющие обеспечить улучшение энергетического режима работы энергоприемников – оборудования, устройств, систем.
    Это замена устаревшего не энергоэффективного оборудования, модернизация систем освещения, контроля и управления процессами, не одновременное, а распределенное (несмимметричное) пол времени включение реактивных нагрузок, оптимизация режима работы подразделений и т.д. и т.п;
  • использование переключения с треугольника на звезду статорных обмоток асинхронных двигателей с загрузкой в часы работы менее, чем на 40%;
  • снижение объемов потребляемой реактивной мощности за счет отключения асинхронных двигателей, работающих на холостом ходу, а также вывода из эксплуатации (или отключения) трансформаторов с загрузкой менее, чем на треть;
  • применение в проектах и замена в действующих приводах асинхронных двигателей синхронными, где это допустимо в техническом и технологическом аспектах;
  • модернизация приводов с применением тиристорного управления регулированием напряжения, преобразователей с заменой на модели с большим числом фаз выпрямления;
  • интеграция в электрические сети систем с искусственной коммутацией вентилей или ограничениями по генерации токов высших гармоник;
  • применение в новых сегментах электрической сети и поэтапная замена действующих реактивных нагрузок на оборудование, устройства, сертифицированные по энергосбережению.

Активные средства компенсации реактивной мощности.

К активным средствам компенсации реактивной мощности, генерирующим реактивную энергию в электрические сети, относят:

  • единичные косинусные конденсаторы и конденсаторные батареи, применяемые в способах индивидуальной и групповой компенсации реактивной мощности;
  • конденсаторные батареи с коммутационной аппаратурой, средствами защиты и управления – комплектные установки повышения коэффициента мощности – нерегулируемые и автоматические с релейными контакторами;
  • синхронные двигатели и их разновидность – синхронные компенсаторы, работающие без нагрузки на валу и используемые для стабилизации напряжения в точке подключения в пределах интервала ±5% от номинального значения;
  • многоступенчатые установки коррекции коэффициента мощности на конденсаторных батареях и с тиристорными ключами. Установка устройств с тиристорными ключами дает возможность снизить броски тока при включении ступеней — конденсаторных батарей и риски перенапряжения при отключении ступеней;
  • статические тиристорные компенсаторы реактивной мощности — мостовые генераторы реактивной мощности с индуктивным накопителем, реакторы насыщения с нелинейной или линейной вольтамперной характеристикой, а также последовательным подключением встречно-параллельных управляемых вентилей – работающие принципу прямой и косвенной компенсации.
  • тиристорные компенсаторы реактивной мощности для сетей с резкопеременной нагрузкой напряжением 6-10 кВ, тиристорно-реакторные группы для ЛЭП и т.д.

Способы компенсации реактивной мощности в системах электроснабжения.

Среди популярных способов выделяют централизованную (по стороне высшего и низшего напряжения), групповую, индивидуальную и комбинированную компенсацию реактивной мощности, а в качестве комбинированной обычно используется централизованная в сочетании с групповой и/или индивидуальной.

Выбор средства и способа компенсации реактивной мощности, установка устройств и обслуживание осуществляется профильной компанией по результатам энергетического аудита объекта, что позволяет исключить риски перекомпенсации и минимизировать объемы недокомпенсированной мощности для конкретной электрической сети с реактивными нагрузками.

Читайте также:  Подключить светильник постоянного тока

Источник

Что такое реактивная мощность и как с ней бороться

реактивная мощность

Реактивная мощность определяет периодический обмен электрической энергией между источником и электроприемником с двойной частотой по отношению к частоте переменного тока без преобразования ее в другой вид энергии и может рассматриваться как характеристика скорости обмена электроэнергией между источником и магнитным полем электроприемника.

Суммарная энергия, связанная с существованием этой составляющей мгновенной мощности, равна нулю. Ее появление, очевидно, связано с наличием в системе производства, передачи и распределения электроэнергии элементов, в которых возможно периодическое накопление и последующий возврат определенного количества энергии. В противном случае обмен электрической энергией между источником и электроприемником был бы невозможен.

Физика процесса и практика применения установок компенсации реактивной мощности

Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени. Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

Физика процесса

В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Активная и реактивная мощности

Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии.

реактивная мощность

Действительно, чем выше cos φ, тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

Реактивная мощность может рассматриваться как характеристика скорости обмена электрической энергией между источником и магнитным полем электроприемника. В отличие от активной мощности реактивная мощность не выполняет непосредственно полезной работы, она служит для создания переменных магнитных полей в индуктивных электроприемниках (например, в асинхронных двигателях, силовых трансформаторах и др.), непрерывно циркулируя между источником и потребляющими ее электроприемниками.

Реактивная мощность бытовых потребителей

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

График переменного тока

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Коэффициент мощности бытовых электроприборов

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Что такое реактивная мощность

Способы компенсации реактивной мощности

Способы компенсации реактивной мощности Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Выводы

Способы компенсации реактивной мощности Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Источник