Меню

Среднеквадратическое значение измеряемого тока

Среднеквадратическое значение измеряемого тока

Расчет среднего и среднеквадратичного значений тока и напряжения: формулы и калькулятор

Данный текст является расширенным и углубленным вариантом моей старой заметки на сайте we.easyelectronics.ru.

В рамках данной заметки рассмотрим способы вычисления среднего и среднеквадратичного значений тока и напряжения. При этом для простоты ограничимся формами сигнала, характерными для импульсных источников питания. Обращаю ваше внимание – все формулы, приводимые в заметке, даются без выводов, дабы не забивать головы читателей мутной и не особо нужной херней. С другой стороны, если кому-то интересно, откуда данные формулы взялись – можно скачать файл, в котором приведены все необходимые выводы с пояснениями.

Будучи в недавнем прошлом яростным разработчиком всевозможных импульсных источников питания (ИИП), интересовался всяким по данной теме (да и сейчас, бывает, трясу стариной). В частности, весьма важными мне всегда казались такие характеристики сигнала, как среднее и среднеквадратичное значение токов и напряжений в различных точках схемы, поскольку при расчетах ИИП данные параметры используются сплошь и рядом. Чтобы понять, где могут быть полезны данные характеристики, сначала определимся с тем, что мы под ними понимаем.

Естественно, существуют строгие «математические» определения как для среднего, так и для среднеквадратичного значений физических величин, периодически изменяющихся во времени по некоторому закону. Однако, больно уж они мутные и абстрактные, и, на мой взгляд, нужны только при выводе формул. Разработчику же гораздо важнее понимать физический смысл используемых в расчетах величин, поэтому приводимые ниже определения среднего и среднеквадратичного значений будут носить сугубо прикладной характер.

Среднее значение переменного тока или напряжения (во вражеских терминах AVG) – это просто их постоянная составляющая. Поэтому вполне очевидно, что среднее значение широко применяется при расчетах схем, выделяющих из переменного сигнала постоянный уровень. Простейший понижающий преобразователь (Step-Down) с LC-фильтром на выходе, RC-цепочка, призванная выделить постоянное напряжение из поступающего на вход ШИМ-сигнала – всё это примеры того, где без использования среднего значения физической величины ничего толком не посчитаешь.

Среднеквадратичное (действующее, эффективное) значение определяется немного сложнее. Как известно, любой переменный ток (напряжение), проходя через активную линейную нагрузку (например, резистор), выделяет на ней некоторое количество тепла. Но так поступает не только переменный сигнал – постоянный ток тоже будет греть резистор.

Так вот, среднеквадратичное значение переменного тока или напряжения (во вражеских терминах RMS) – это такой постоянный ток (напряжение), который за одинаковый промежуток времени нагреет один и тот же резистор точно так же, как и исходный переменный сигнал. Поэтому одно из важнейших применений среднеквадратичного значения – расчет потерь и соответствующего нагрева для различных элементов силовых цепей ИИП. Хочешь узнать статические потери на ключе флайбэка – будь добр посчитать среднеквадратичное значение тока первички. Надо узнать мощность токосчитывающего резистора – туда же. Даже потери (и приблизительный нагрев) в обмотках трансов и дросселей для хиленьких источников и невысоких частот преобразования в первом приближении можно посчитать при помощи среднеквадратичного значения тока, через эти обмотки протекающего.

В общем, среднее и среднеквадратичное значения используются довольно часто. Поэтому неплохо было бы уметь их рассчитывать для любого сигнала, который может нам встретиться в импульсном источнике питания. При этом лично я разделяю токи и напряжения в ИИП на две большие группы: сигналы с простой формой (элементарные) и сигналы со сложной формой (т.е. те, которые могут быть представлены в виде суммы нескольких элементарных). И поскольку принципы расчета среднего и среднеквадратичного значений для этих двух групп немного отличаются, предлагаю рассмотреть их по отдельности.

Сигналы простой формы

У сигналов простой формы вычислить среднее и среднеквадратичное значение довольно легко – для этого надо всего лишь взять соответствующую формулу и подставить в нее нужные значения. Чтобы постоянно не шариться по различным справочникам, я завел себе специальную табличку, в которую свел расчетные формулы для наиболее часто встречающихся элементарных сигналов:

(данные формулы, кстати, взяты не с потолка – их вывод при желании можно посмотреть в специальной заметке-пояснении).

Здесь хотелось бы заострить внимание на нескольких моментах. Во-первых, на приведенных выше рисунках рассматривается по два варианта каждого из простейших сигналов: «в общем виде» и «без смещения». При этом с точки зрения разработчика импульсных источников питания наиболее интересным обычно является именно второй вариант, поэтому для него и даны отдельные формулы (чтобы постоянно не подставлять С=0 в «общие» выражения). Во-вторых, пилообразное напряжение, вообще говоря, является сложным сигналом, поскольку может быть представлено в виде суммы двух простых (либо трапеций, либо треугольников). Однако, пила настолько часто встречается при расчетах ИИП, а выражения AVG и RMS для нее настолько лаконичны и красивы, что я в результате включил-таки ее в список сигналов, среднее и среднеквадратичное значение которых вычисляется тупо всего по одной формуле. Ну и в-третьих, вышеприведенная таблица, в принципе, могла бы состоять всего из одной трапеции, ибо из нее легко получить как прямоугольник, так и треугольник, поставляя соответствующие значения «H», «L» и «C». Однако практика показала, что постоянно этим заниматься весьма муторно, ибо мы рассчитываем источник, а не тренируем математические навыки. Поэтому в итоге я себе выписал готовые формулы AVG и RMS для прямоугольника и треугольника, что оказалось весьма и весьма удобным. Ну а в целом – как ни странно, представленные выше формулы для элементарных сигналов покрывают, наверное, 75-80% всех потребностей разработчика импульсных источников питания, что весьма немало. Однако, всё многообразие токов и напряжений в ИИП отнюдь не ограничивается вышеупомянутыми четырьмя (и даже тремя, если не учитывать пилу) формами. Поэтому рано или поздно любой разработчик импульсников сталкивается с необходимостью вычисления среднего и среднеквадратичного значения сложного сигнала (яркий пример – расчет пуш-пула).

Читайте также:  Элемент с эдс 6 в дает максимальный ток 3 а при коротком замыкании какова наибольшая

Сигналы сложной формы

Как было сказано выше, сигналы сложной формы – это такие, которые могут быть представлены в виде суммы нескольких элементарных сигналов. Применительно к импульсным источникам питания в качестве последних выступают прямоугольник, треугольник или трапеция, и значительно реже – синус, косинус и прочая «плавная» херня. Отметим, что в данном случае, в отличие от простейших форм, нахождение аналитических выражений для среднего и среднеквадратичного значений обычно превращается в неблагодарное занятие. Например, для вывода «среднеквадратичной» формулы нам надо разбить сложный сигнал на несколько простейших, а затем извлечь квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений (думаю, даже понять, о чем говорится в данном предложении, у вас получится далеко не сразу). Найти среднее значение сложного сигнала немного проще (надо просто просуммировать средние «элементарные» значения), однако поверьте – сделать из этого удобоваримую формулу в подавляющем большинстве случаев не удается:

К счастью, готовая формула для нахождения AVG и RMS сложного сигнала обычно не требуется. Чаще всего нам надо просто узнать среднее или среднеквадратичное значение тока (напряжения) именно для нашего конкретного случая, а не вывести аналитическое выражение на все случаи жизни. А это существенно упрощает задачу, ибо посчитать числовое значение AVG или RMS для каждого элементарного сигнала на соответствующем временно́м интервале не так уж и сложно. В качестве примера можно рассмотреть нахождение среднего и среднеквадратичного значения напряжения, характерного для пушпульной, полумостовой и полномостовой схем (данный расчет есть и в специальной заметке-пояснении):

Как следует из предпоследнего рисунка, для начала нам надо разбить исходный сигнал на элементарные. Очевидно, что это будут три трапеции и один прямоугольник:

Дальше нам надо посчитать среднее и среднеквадратичное значение каждого из четырех элементарных сигналов, для чего воспользуемся формулами из вышеприведенной таблицы. Начнем с первого из них — трапеции №1. Как видно из последнего рисунка, это трапеция без смещения с параметрами

Поэтому в соответствии с формулами для трапеции, приведенными выше, будем иметь:

Сигнал №2 – это тоже трапеция без смещения. Параметры данной трапеции будут таковы:

Поэтому среднее и среднеквадратичное значение второго сигнала составят соответственно

Трапеция №3 полностью совпадает с трапецией №1, просто она сдвинута вправо на полпериода. Поэтому как параметры третьего сигнала, так и его среднее и среднеквадратичное значения будут равны соответствующим значениям первого сигнала:

Ну и остался сигнал №4. Данный сигнал представляет собой прямоугольник с параметрами

И после использования формул для вычисления среднего и среднеквадратичного значения сигнала №4, получим следующее:

Теперь у нас есть все данные для нахождения AVG и RMS исходного сигнала. Как было сказано выше, среднее значение находится как сумма средних значений элементарных сигналов, на которые был разложен «исходник», а среднеквадратичное – как квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений. То есть в нашем случае будем иметь

Для проверки полученного результата используем широко распространенное бесплатное ПО LTSpice IV от компании Linear Technology Corporation (LTC). Сгенерировав сигнал с требуемыми параметрами, измерим в эмуляторе среднее и среднеквадратичное его значение за 5 периодов:

Как видим, результаты работы эмулятора полностью совпадают с расчетными AVG и RMS, т.е. предложенный способ вычисления среднего и среднеквадратичного значений для сложного сигнала вполне имеет право на жизнь. Более того, способ этот довольно прост и не требует от разработчика ИИП никаких особых математических навыков. С другой стороны, муторность рассмотренного алгоритма также налицо. Лично меня дичайше бесит постоянно считать на калькуляторе и выписывать на бумажку средние и среднеквадратичные значения для всех элементарных сигналов, на которые раскладывается исходный, а пото́м складывать их на том же калькуляторе (и это в лучшем случае, ибо если требуется RMS, всё становится еще волшебнее). Поэтому я принял решение сделать себе некий инструмент, упрощающий жизнь разработчика ИИП, которым и хотел бы поделиться с читателями.

Данный инструмент – это такая специальная «программа» (cko4aTb бесплатно). «Программа» представляет собой обычный экселовский файл (т.к. программист я тот еще), поэтому для работы нам потребуется «Excel» (у меня вот такой: Microsoft® Excel 2002 (10.4302.2625)). Изначальная и основная задача рассматриваемой «программы» – отрисовка формы трапецеидального сигнала с заданными параметрами (рисуется один период), а также вычисление среднего и среднеквадратичного значений для этого сигнала. Также «программа» умеет рисовать переменную составляющую заданной трапеции (она получается если из исходного сигнала вычесть постоянную составляющую) и вычислять ее RMS-значение (это уж так, чисто на всякий случай). Ну и еще предлагаемый софт позволяет быстро посчитать среднее и среднеквадратичное значения для сложного сигнала, состоящего максимум из 16-ти различных элементарных (большее количество в реальной жизни вряд ли потребуется):

Почему в качестве основы взята именно трапеция? Потому что, как было сказано выше, из нее легко получить все основные формы сигналов, встречающихся в импульсных источниках питания, а именно – прямоугольник и треугольник:

Ну а уж на основе этих базовых сигналов можно сляпать и пилу, и напряжение на стоке ключа во флайбэке, и то, что творится на вторичке пушпула и многое другое.

Пользоваться «программой» очень просто. Исходные данные для трапеции вводятся слева в ячейки, выделенные зеленым цветом. После этого чуть ниже можно посмотреть на форму сигнала с введенными параметрами, а еще ниже отобразятся рассчитанные среднее и среднеквадратичное значения этого сигнала. За переменную составляющую трапеции отвечает правый нижний угол экрана (здесь рисуется ее график и рассчитывается значение RMS). Ну а для работы со сложным сигналом предназначен правый верхний угол. Здесь в ячейки, выделенные зеленым цветом, вводятся средние и среднеквадратичные значения элементарных сигналов, из которых состоит «исходник», а ниже рассчитываются уже́ его собственные AVG и RMS.

Читайте также:  Закон ома для участка цепи где i сила тока u напряжение r сопротивление

Отмечу, что на всю «программу» наложена магическая защита, позволяющая редактировать только те ячейки, которые можно. При необходимости защита снимается элементарно («Сервис» => «Защита» => «Снять защиту листа»), однако делать это не рекомендую: можно по дури снести какую-нибудь нужную формулу, восстанавливать которую – лишний геморрой.

Вот, в принципе, и всё описание представленной «программы». Несмотря на свою простоту и очевидность, данный софт довольно существенно помогает и экономит время при расчетах ИИП (ну, во всяком случае, у меня происходит именно так). Например, на расчет среднего и среднеквадратичного значения сложного сигнала, приведенного в предыдущем пункте, понадобится менее минуты. Последовательность действий проста – вводим параметры первой трапеции, затем переписываем рассчитанные для нее значения AVG и RMS в ячейки секции сложного сигнала. Затем то же самое проделываем для остальных трех элементарных функций, из которых состоит «исходник». Всё, остальное «программа» сделает сама, не надо никаких шаманств с бумажками и калькуляторами:

Ну а у меня на сегодня всё. Желаю удачи при проектировании и изготовлении импульсных (и не только) источников питания!

Обсудить эту заметку можно здесь

Ссылки по теме, документация

Заметка-пояснение с выводом формул и примером расчета среднего и среднеквадратичного значений сложного сигнала:

Калькулятор для упрощения вычислений среднего и среднеквадратичного значений простых и сложных сигналов:

Место для разного (сдается)

Создание, «дизайн», содержание «сайта»: podkassetnik
Для писем и газет: Почта России электрическая

Место для &#169 (копирайта, понятно, нет, но ссылайтесь хотя бы на первоисточник)

Источник

Среднеквадратичное значение тока

Физика > Среднеквадратичное значение корня

Изучите соотношение среднеквадратичного напряжения и тока – формула и как найти. Читайте определение среднеквадратичного значения, применение, уравнения.

Среднеквадратичное напряжение или ток – усредненное по времени напряжение или ток в системе переменного тока.

Задача обучения

  • Соотнести среднеквадратичное напряжение и ток в переменном круге с пиковым напряжением, током и средней мощностью.

Основные пункты

  • Постоянный ток и напряжение выступают стабильными понятиями, но переменные ток и напряжение способны меняться со временем.
  • Среднеквадратичное значение (СКЗ) – статическая мера переменной величины. Ее используют для выражения среднего тока или напряжения в системе с переменным током.
  • СКЗ тока и напряжения – пиковый ток и напряжение над квадратным корнем из двух.
  • Средняя мощность в цепи переменного тока отображает результат СКЗ и напряжения.

Термин

  • Среднеквадратичное значение – квадратный корень среднего арифметического квадратов.
  • Среднеквадратичный ток – средний квадрат тока: IСКЗ = I0/√2, где I0 – пиковый.
  • Среднеквадратичное напряжение – средний квадрат напряжения: VСКЗ = V0/√2, где V0 – пиковое напряжение).

Среднеквадратичное значение и переменный ток

В ситуациях с переменным током поток электрического заряда периодически меняет направление. Если в постоянном ток и напряжение остаются стабильными, то здесь они меняются со временем. Этот вариант используют по большей части в быту. Иногда возникает необходимость узнать усредненный по времени показатель тока или напряжения. Для этого можно взять средний квадрат корня со временем.

Определение

Среднеквадратичное значение (СКЗ) – статическая мера переменной величины. Это полезно, если функция чередует положительные и отрицательные показатели (синусоиды). Перед нами квадратный корень из среднего арифметического квадратов. В случае набора значений n (x1, x2, . xn) СКЗ определяется по формуле:

Соответствующая формула для непрерывной функции f (t), вычисленной на интервале T1 ≤ t ≤ T2:

Среднеквадратичное значение тока для функции в течение всего времени:

Среднеквадратичное значение напряжения за время периодической функции приравнивается к СКЗ одного периода.

Применение к напряжению и току

Давайте взглянем на синусоидально меняющееся напряжение:

(а) – Постоянное напряжение и ток остаются стабильными. (b) – График напряжения и тока в зависимости от времени для мощности переменного тока в 60 Гц. Напряжение и ток выступают синусоидальными и расположены в фазе для простой схемы сопротивления. Частоты и пиковые напряжения сильно отличаются

V = Vsin (2πft), где V – напряжение в момент времени, V – пиковое напряжение, f – частота в Гц. Для этой простой схемы сопротивления I = V/R, поэтому ток переменного выглядит как:

I = Isin (2πft), где I – ток в момент времени, а I = V/R – пиковый ток. Теперь, используя вышеприведенное определение, выведем среднеквадратичные напряжение и ток. Прежде всего, у нас есть

Здесь мы заменили 2πf на ω. Поскольку V выступает постоянной, можно разложить ее из квадратного корня и использовать тригонометрическую формулу для замены квадрата синусоидальной функции.

Поскольку интервал отображает целое число полных циклов, члены отменяются, оставляя:

Вы также поймете, что СКЗ можно выразить через

Обновленное уравнение контура

Многие из выведенных уравнений относятся к переменному току. Если нам нужно получить усредненный по времени результат, то соответствующие переменные выражаются в СКЗ. К примеру, закон Ома передается как

Различные выражения для мощности переменного тока выглядят как:

Отсюда видно, что можно вывести среднюю мощность, основываясь на пиковом напряжении и токе.

Мощность переменного тока, основываясь на времени. Напряжение и ток пребывают в фазе, а их продукт колеблется между нулем и IV. Средняя мощность – (1/2) IV

СКЗ полезны, если напряжение меняется по форме сигнала, отличающегося от синусоидов (квадратные, треугольные или пилообразные волны).

Синусоидальные, квадратные, треугольные и пилообразные волны

Источник



Среднеквадратичное (действующее, эффективное) значение

Что же из себя представляет среднеквадратичное значение напряжения и как его замерить? Давайте разберем значение этого термина. Поможет нам в этих делах наш осциллограф OWON SDS6062 , Блок питания, а также ЛАТР (Лабораторный автотрансформатор). Для того, чтобы разобраться в этом, мы проведем простейший опыт.

Лампочка и постоянное напряжение

Для опытов нам также понадобится простая автомобильная лампа накаливания на напряжение 12 Вольт

Вот ее характеристики: рабочее напряжение U=12 Вольт, мощность Р = 21 Ватт.

Следовательно, зная мощность и напряжение лампы, можно узнать, какую силу тока будет потреблять лампочка. Из формулы P=IU, где I – сила тока, можно найти I. Значит I=P/U=21/12=1,75 Ампер.

Читайте также:  Техника безопасности при работе с трансформаторами тока

Ладно, с лампочкой разобрались. Давайте ее зажжем. Для этого на нашем блоке питания выставляем рабочее напряжение для нашей лампы

Подаем напряжение с блока питания на лампу и вуаля!

Замеряем напряжение на клеммах-крокодилах блока питания с помощью мультиметра . Ровнехонько 12 Вольт, как и предполагалось.

К этим же клеммах цепляем и наш осциллограф

Видите прямую линию? Это и есть осциллограмма постоянного напряжения. В течение времени у нас напряжение остается таким, каким и было и не меняется. Если посчитать, то можно вычислить, чему равняется напряжение. Так как одна клеточка у нас 5 Вольт (на фото внизу слева), то значит, наше напряжение 12 Вольт. Я также вывел это значение на дисплей осциллографа в самом нижнем левом углу: 12,03 Вольт. Все верно.

Замеряем силу тока. Как правильно замерить силу тока в цепи, можно узнать, прочитав статью как измерить ток и напряжение мультиметром?.

Получили 1,72 Ампер. А как вы помните, наше расчетное значение было 1,75 Ампер. Думаю, вину можно переложить на погрешность прибора или на лампочку 😉

Лампочка и переменное напряжение

Теперь начинается самое интересное. Берем наш ЛАТР

Ставим прибор на измерение переменного напряжения и выставляем с помощью крутилки ЛАТРа напряжение в 12 Вольт. Обратите внимание, что крутилка на мультиметре находится в диапазоне измерения переменного напряжения. Забегая вперед, скажу, что мультиметр измеряет среднеквадратичное напряжение.

Цепляем осциллограф к клеммах ЛАТРа, не забывая на осциллографе выставить замеры переменного напряжения и смотрим получившуюся осциллограмму:

Смотрим, сколько силы тока кушает наша лампочка. Все как положено, 1,71 Ампер.

Среднеквадратичное значение напряжения

Итак, что же у нас получилось? Как и постоянное напряжение, так и переменное напряжение зажигали одну и ту же лампочку, которая кушала одну и ту же мощность. Значит эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

и вот эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

Чем то похожи? Но чем.

Среднеквадратичное значение напряжения – это такое значение переменного напряжения, при котором нагрузка потребляет столько же силы тока, как и при постоянном напряжении. То есть лампочка у нас потребляла 1,71 Ампер и при постоянном токе и при переменном. То есть, в двух этих случаях, мощность, которую потребляла лампочка, была одинакова.

Также среднеквадратичное напряжение еще называют действующим или эффективным значением напряжения. С помощью несложных умозаключений, инженеры-электрики пришли к выводу действующее (оно же среднеквадратичное) напряжение синусоидального сигнала любой частоты равняется максимальной его амплитуде, поделенной на корень из двух

Стоп! Мы ведь не разобрали, что такое максимальная амплитуда! На осциллограмме максимальная амплитуда выглядит примерно вот так:

Если даже посчитать по клеточкам и посмотреть, чему равняется одна клеточка по вертикали (смотрим внизу слева, она равняется 5 Вольт), то Umax = 17 Вольт. Делим это значение на корень из двух. Я беру это значение как 1,41. Получаем, что среднеквадратичное значение равняется 17/1,41=12,06 Вольт. Ну что, все верно 😉

Значит, когда нам говорят, что напряжение в розетке равняется 220 Вольт, то мы то знаем, что на самом деле это среднеквадратичное напряжение. Максимальная амплитуда этих 220 Вольт равняется 220х1,41=310 Вольт.

Где же среднеквадратичное напряжение и максимальная амплитуда сигнала прячутся на табличке измерений? Да вот же они!

Vk – это и есть среднеквадратичное напряжение этого сигнала.

Ma – это и есть Umax.

Конечно, 16,6/1,41=11,8 Вольт, а он пишет 12,08 Вольт.

Источник

Что такое истинные среднеквадратичное значение?

Устройства с измерением истинных СКЗ (СКЗ = среднеквадратичное значение) представлены тремя приборами, которые измеряют переменный ток или напряжение переменного тока:

Обычно используются приборы первых двух типов, которые могут точно измерять стандартные (чистые) синусоидальные сигналы переменного тока.

Специалисты предпочитают пользоваться устройствами с измерением истинных среднеквадратичных значений, поскольку только такие приборы способны точно измерять как синусоидальные, так и несинусоидальные сигналы переменного тока. (См. рисунки в верхней части страницы).

  • Синусоидальные сигналы: чистые, без искажений, сигналы с симметричными переходами между точками максимума и минимума.
  • Несинусоидальные сигналы: сигналы нерегулярной формы с искажениями: импульсные выбросы, последовательности импульсов, квадратные, треугольные и пилообразные сигналы, а также любые другие сигналы неровной или угловатой формы.

Порядок расчета СКЗ

Как уже говорилось ранее, СКЗ расшифровывается как среднеквадратичное значение. Хотя формула среднеквадратичного значения может быть сложной для понимания, оно фактически соответствует эквивалентному значению постоянного тока для сигнала переменного тока. С технической точки зрения она определяет «эффективное» значение (значение нагрева постоянным током) для волны переменного тока любой формы.

В устройствах с усредненными показаниями для точного измерения чистых синусоидальных волн используются математические формулы усреднения. Такое устройство может измерять несинусоидальные волны, но с невысокой точностью.

Более совершенные устройства с измерением истинных среднеквадратичных значений могут точно измерять как чистые волны, так и более сложные несинусоидальные волны. Формы сигнала могут быть искажены из-за нелинейных нагрузок, например приводов с регулируемой частотой вращения или компьютеров. При измерении искаженной волны устройство с усредненными показаниями может показать результат на 40 % ниже или на 10 % выше фактических значений.

Что такое среднеквадратичное напряжение?

Где измеряются истинные среднеквадратичные значения?

Потребность в устройствах с измерением истинных среднеквадратичных значений возросла, поскольку за последние годы значительно увеличилась вероятность возникновения несинусоидальных сигналов в цепях. Некоторые примеры:

  • Приводы двигателей с регулируемой частотой вращения
  • Электронные балластное сопротивление
  • Компьютеры
  • Системы ОВКВ
  • Твердотельные среды

В таких условиях ток возникает в форме коротких импульсов, а не в виде сглаженной синусоиды, как на стандартном асинхронном двигателе. Форма волны такого сигнала тока может значительно повлиять на показания токовых клещей. Кроме того, устройство с измерением истинных среднеквадратичных значений лучше всего подходит для измерений на линиях электропередач с неизвестными характеристиками переменного тока.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Источник