Меню

Трансформатор напряжения регулировка тока

Особенности и управление зарядным устройством с регулировкой по первичной обмотке трансформатора

В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.

Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.

Управление трансформатором по первичной обмотке

Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.

Зарядное устройство с регулировкой по первичной обмотке трансформатора схема

Особенности регуляторов для первички трансформаторов

Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.

Запас напряжения необходим для регулировки и ограничения зарядного тока.

В разных моделях аппаратов она производится разными способами:

  • Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
  • Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
  • Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.

Зарядное устройство с регулировкой по первичной обмотке трансформатора подробная схема

Схема и назначение тиристорного регулятора напряжения для трансформатора

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Зарядное устройство с регулировкой по первичной обмотке понижающего трансформатора Т1

Принцип действия тиристорного регулятора

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.

схема тиристорного регулятора

Разновидности и технические характеристики тиристорного регулятора

Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:

    Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “

” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.

  • Использовать два тиристора, включенные встречно-параллельно и для управления через переменный резистор соединяются управляющие вывода. Каждый из элементов открывается при своей полярности, а оба вместе управляют напряжением на нагрузке.
  • тиристорный регулятор

    Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:

    • Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
    • Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
      Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов:
    • КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
    • КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
    • КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
    • КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
    • КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.

    тиристорный регулятор ТС122

    Что представляет собой симистор

    У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

    Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

    Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
    Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

    Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

    Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.

    Симистор

    Другие простые варианты регулировки напряжения в первичке

    Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

    • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
    • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
    • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

    Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

    Источник

    Регулирование напряжения трансформатора

    Задачи и необходимость регулирования

    Любой современный потребитель электрической энергии (промышленное предприятие, жилой дом) требует получения электроэнергии в достаточном количестве и хорошего качества. Под качеством электрической энергии понимается ее частота, симметрия и величина подводимого к потребителю трехфазного напряжения.

    Для экономичной и безаварийной работы любого потребителя необходимо, чтобы отклонения фактической величины подводимого к нему напряжения были минимальными. Во всяком случае, эти отклонения не должны превышать установленной для данного приемника нормы. Такие нормы определяются, например, ГОСТ 13109—67 и «Правилами устройства электроустановок» (ПУЭ) и не должны нарушаться. Так, для электродвигателей напряжение на зажимах не должно отличаться от номинального более чем в пределах от —5 до +10%. При снижении напряжения, например, на 10% уменьшится скорость вращения двигателя и возрастут токи ротора и статора, что приведет к перегреву обмоток двигателя и сокращению срока службы его изоляции.

    Читайте также:  Концентрация носителей тока в датчике холла

    Весьма чувствительны к отклонениям напряжения осветительные установки, для которых допустимое отклонение напряжения составляет ±5% для жилых помещений и от —2,5 до + 5% для общественных зданий и производственных помещений. При понижении напряжения резко ухудшается освещаемость, а при повышении, например, на 10% срок службы ламп сокращается примерно втрое.

    Для некоторых дуговых электропечей снижение напряжения на 8% заставляет прекращать плавку стали, т. е. является аварийным.

    Таким образом, колебания напряжения приводят к значительному ущербу и нужно стремиться сделать их минимальными. Однако выполнить это очень непросто, так как причинами колебаний напряжения являются неизбежные изменения (включения и отклонения) нагрузки и переменные режимы работы потребителей электроэнергии. Колебания напряжения являются в принципе неизбежными, поэтому для поддержания уровня напряжения постоянным требуется постоянное его регулирование.

    Способы регулирования напряжения

    Различают два способа регулирования напряжения: местное и централизованное.

    Под местным регулированием понимают регулирование напряжения непосредственно на месте потребления, т. е. его стабилизацию на заданном уровне у каждого отдельного потребителя (например, стабилизаторы для телевизоров) или сразу для группы потребителей (например, для одного или нескольких домов). В последнем случае в какой-то точке сети устанавливают трансформатор с устройством для регулирования напряжения. Это устройство включают, когда у всех потребителей, питаемых от этого трансформатора, надо поддержать напряжение на определенном уровне (например, 220 В).

    Регулирование напряжения может быть автоматическим, без отключения трансформатора от сети. При этом потребитель даже не чувствует, что в трансформаторе происходят какие-то изменения. Такое регулирование напряжения называют регулированием под нагрузкой (РПН). Однако РПН требует применения сложных и дорогих переключающих устройств. Поэтому для трансформаторов небольшой мощности часто применяют регулирование напряжения без возбуждения, т. е. после отключения всех их обмоток от сети. Этот способ регулирования сокращенно называют ПБВ (переключение без возбуждения). После переключения трансформатор вновь включается в работу. При этом способе потребителя на какое-то время вообще отключают от сети. Особенно неудобно это там, где нагрузка меняется часто. Зато устройства ПБВ просты по конструкции и относительно дешевы.

    Под централизованным регулированием понимают регулирование напряжения непосредственно на шинах генераторов электростанций при помощи изменения их возбуждения. Централизованное регулирование осуществляют обычно как «встречное», т. е. таким образом, чтобы оно заранее «встречало» колебания напряжения, вызванные нагрузкой. Так, в период наибольших нагрузок у генераторов поднимают напряжение выше номинального, чтобы компенсировать повышенные потери напряжения в сети и поддержать его у потребителя близким к поминальному. И наоборот, когда нагрузка снижается, уменьшают возбуждение у генераторов и соответственно напряжение в сети.

    Регулирование напряжения без возбуждения

    Допустим, что к сети с напряжением 6,3 кВ нормально подключены несколько трансформаторов с вторичными напряжениями 220 В. На практике редко случается, чтобы все эти трансформаторы непрерывно работали с полной нагрузкой. В ночные часы, когда не работает большинство заводов и потребляемая ими мощность обычно невелика, в сети 6,3 кВ проходит небольшой ток, не вызывающий заметного падения напряжения.

    Когда на заводах включаются в работу станки, резко увеличивается нагрузка на каждый трансформатор. Вторичные токи в трансформаторах возрастают, растет соответственно и первичный ток, потребляемый каждым трансформатором. Складываясь, эти токи образуют в сети 6,3 кВ ток, во много раз больший, чем в ночные часы суток. Действительное напряжение сети равно уже не 6,3 кВ, а какой-то другой, меньшей величине. На столько же уменьшается и вторичное напряжение, питающее приемники энергии.

    Однако потребители электроэнергии заинтересованы в получении постоянного напряжения 220 В вне зависимости от колебаний первичного напряжения. Чтобы удовлетворить эти требования, в трансформаторах предусматривают возможность регулирования напряжения.

    Наибольшее распространение на практике получило регулирование напряжения при помощи изменения ступенями числа витков одной из обмоток. Подавляющее большинство трансформаторов строят с регулированием числа витков в обмотке ВН. Дело в том, что по обмотке НН протекает большой ток и, следовательно, переключающее устройство должно быть рассчитано на этот ток, т. е. оно неизбежно будет громоздким. В обмотке ВН ток в десятки раз меньше (6300/220=28,6) и, следовательно, переключающее устройство может быть сравнительно небольшим и легким, хотя его и придется изолировать от заземленных частей трансформатора на 6,3 кВ.

    При изменении числа витков, например, первичной обмотки меняется величина магнитного потока, вследствие чего увеличивается (или уменьшается) напряжение во вторичной обмотке трансформатора. Так, если напряжение питающей сети (первичное) постоянно, а вторичное упало, то для его восстановления надо увеличить магнитный поток. Это достигается уменьшением числа витков ω1 первичной обмотки.

    Действительно, при постоянном U1 эдс Е1 также неизменна. Из выражения Е1 = 4,44f ω1Ф0макс следует, что увеличить магнитный поток при неизменной Е1 можно, только уменьшив число витков первичной обмотки. Если же первичное напряжение упало, то соответственно упадет и величина Ф. Для сохранения постоянной величины вторичного напряжения надо восстановить прежнее значение магнитного потока. Этого можно достигнуть также уменьшением числа витков первичной обмотки.

    Принцип регулирования как раз и заключается в изменении определенными ступенями числа витков в обмотке трансформатоpa, что обеспечивает необходимые величины магнитного потока и напряжения. На практике в обмотке ВН трансформатора делают ряд ответвлений, каждое из которых соответствует заданному числу последовательно включенных витков обмотки (рисунок 1).

    Вывод регулировочных ответвлений в обмотке ВН

    а — пять ответвлений в конце; б — шесть ответвлений в середине; в — оборотная схема с тремя ответвлениями в конце; г — магнитно-симметричная схема; д — магнитно-симметричная схема с пятью ответвлениями

    Рисунок 1 — Вывод регулировочных ответвлений в обмотке ВН

    Стандартные трансформаторы малой и средней мощности (до 630 кВА) имеют на обмотке, как правило, пять ответвлений (рисунок 1, а), из которых среднее (Х3) соответствует нормальному напряжению сети (в нашем примере 6,3 кВ), а другие — напряжениям, отличающимся от него на ±5% (±2×2,5%). Так, если напряжению 6,3 кВ соответствует 1000 витков в обмотке ВН (ответвление Х3), то напряжению 6,615 кВ (ответвление Х1), большему на 5%, соответствует 1050 витков, а напряжению 5,985 кВ (ответвление Х5), меньшему на 5%, — 950 витков. Напряжение регулируется ступенями по 157,5 В. В обмотке ему соответствует 25 последовательно включенных витков.

    Отключать витки можно как на конце обмотки, так и в ее середине. Однако при отключении витков с края обмотки возможно такое положение, когда обмотка становится как бы короче. Это случается особенно при работе на ответвлении Х5 (рисунок 1, а). Различие в высотах обмоток, как известно, приводит к увеличению осевых усилий. Поэтому обычно ответвления выполняют в середине обмотки (рисунок 1, б). При небольших мощностях применяют оборотную схему (рисунок 1, в).

    Читайте также:  Электрический ток меры защиты от электрического тока реферат

    Ответвления в конце обмотки ВН встречаются редко — главным образом у трансформаторов малой мощности, где механические усилия незначительны, а выполнение ответвлений в середине обмотки конструктивно затруднено.

    Замыкая ответвления А2—А3, А3—А4, А4—А5 и т. д. (рисунок 1,б), включают в работу одновременно все или часть витков обмотки ВН. По схеме, показанной на рисунке, напряжение регулируют в пределах ±5% двумя ступенями по 2,5% в каждой. По схеме, показанной на рисунке 1, в, г, напряжение регулируют также в пределах ±5%, но тремя ступенями (0, +5%, —5%).

    Схемы, показанные на рисунке 1, г, д, являются магнитно-симметричными, они резко снижают механические усилия. Витки регулировочных ступеней в таких обмотках отключаются не с одного конца, а симметрично относительно середины обмоток (рисунок 1, г), что благоприятно сказывается на электродинамической прочности трансформатора, или по всей высоте обмотки (рисунок 1, д). Ответвления замыкаются специальным устройством — переключателем, который соединяет их в определенном порядке, включая в работу то или иное число витков.

    Напряжение регулируют по схемам, показанным на рисунке 1, только при отключенном от сети трансформаторе. Переключать ответвления при работающем трансформаторе нельзя, так как при размыкании ответвлений между контактами переключателя возникнет электрическая дуга, которая быстро его разрушит. Следовательно, чтобы переключить обмотку трансформатора на другое напряжение, надо отключить его от сети, переключить его ответвления и вновь включить в работу. На это время все приемники остаются без питания. Это экономически невыгодно.

    Регулирование напряжения под нагрузкой

    Регулирование напряжения трансформаторов способом РПН производится в принципе так же, как и способом ПБВ, но число ответвлений обмотки, т. е. число регулировочных ступеней, обычно бывает больше, а диапазон регулирования — шире. Так, ГОСТ 12022—76 для трансформаторов мощностью 63—630 кВА установил диапазон регулирования напряжения относительно номинального ±10% ступенями по 1,67% (±6X1,67%). ГОСТ 11920—73 разрешил для трансформаторов мощностью 1000—80000 кВА иметь различные диапазоны регулирования: ±9, ±10, ±12%. Существуют серии трансформаторов с еще большим диапазоном: ±16, ±22, ±36. Еще более «глубокое» регулирование требуется для некоторых специальных трансформаторов, например электропечных, где отношение пределов регулирования напряжения обмотки НН нередко составляет 1 : 2, 1 : 3 и даже 1 : 5.

    Рассмотрим наиболее распространенную схему работы переключающего устройства с токоограничивающим реактором (рисунок 2). Переключающее устройство имеет следующие основные части: избиратель ответвлений, контактор, токоограничивающий реактор, привод устройства. В схеме имеется два отводящих (токосъемных) контакта избирателя П1 и П2, два контактора К1 и К2, токоограничивающий реактор Р (Iн — номинальный ток трансформатора).

    Схемы работы переключающего устройства

    а — положение «два вместе»; б — разомкнут контакт ФК2; в — положение «мост»; г — разомкнут контакт К1

    Рисунок 2 — Схемы работы переключающего устройства с токоограничивающим реактором

    На рисунке 2, а оба отводящих контакта установлены на одном ответвлении обмотки. Такое положение контактов называют «два вместе». Номинальный ток нагрузки делится поровну между двумя половинами переключающего устройства. При необходимости перейти на другое ответвление (ступень) обмотки привод в первую очередь размыкает контакты контактора К2 (рисунок 2, б). Эти контакты разрывают ток, равный половине номинального, и между ними возникает электрическая дуга. После гашения дуги весь ток проходит только через вторую (верхнюю) половину переключающего устройства. Отводящий контакт избирателя (П2) при отсутствии тока (цепь разорвана) переходит на другое ответвление обмотки, после чего контакты К2 вновь замыкаются (рисунок 2, в).

    Такое положение переключающего устройства обычно называют положением «мост». Как и в положении «два вместе», номинальный ток нагрузки делится пополам между каждой половиной переключающего устройства. Однако в положении «мост» кроме нагрузочного тока возникает циркулирующий ток, замыкающийся внутри контура, образованного частью обмотки трансформатора и реактором (рисунок 2, в). Величина циркулирующего тока ограничивается сопротивлением контура — в основном сопротивлением реактора. Обычно сопротивление реактора подбирают так, чтобы величина циркулирующего тока была равна половине номинального. В этом случае ток, проходящий через отводящие контакты П1 и П2, не будет больше номинального и нет опасности их чрезмерного нагрева.

    Далее размыкаются контакты К1, разрывающие номинальный ток (рисунок 2, г). После гашения дуги весь ток проходит уже через другую половину переключающего устройства. Отводящий контакт П1 избирателя при отсутствии тока переходит на ответвление, где уже стоит контакт П2, контакт К2 вновь замыкается и переключение заканчивается.

    Из рассмотрения работы переключающего устройства РПН можно сделать следующие выводы:

    — контакты контактора К1 и К2 замыкают и размыкают ток, т.е. подвергаются воздействию электрической дуги;

    — контакты избирателя П1 и П2 замыкаются и размыкаются без разрыва тока, т. е. при отсутствии дуги;

    — привод должен обеспечить описанную последовательность работы контактов;

    — реактор служит для ограничения циркулирующего тока до необходимой величины (например, до половины номинального тока нагрузки);

    — в положениях контактов избирателя «два вместе» и «мост» ток нагрузки распределяется поровну между двумя обмотками реактора, установленными на одном сердечнике. Эти токи направлены навстречу друг другу и в положение «два вместе» не создают возбуждающего поля в сердечнике и падения напряжения.

    Достоинство переключающих устройств с токоограничивающий реактором заключается в возможности длительно работать в промежуточном положении «мост», поэтому для привода этих устройств не требуется специальных быстродействующих механизмов, значит, они могут быть относительно простыми и дешевыми.

    В последние годы широкое распространение получили и другие переключающие устройства — с активными токоограничивающими сопротивлениями. Не рассматривая подробно эти устройства, отметим, что их конструкция получается более сложной и дорогой, чем у переключающих устройств с реакторами. Однако они обладают рядом весьма существенных достоинств: громоздкий и тяжелый реактор заменен сравнительно легкими активными сопротивлениями; конструктивно эти устройства более компактны; условия гашения дуги более благоприятны.

    Существует много схем регулируемых обмоток трансформаторов. На рисунке 3 показана в качестве примера схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором.

    Рисунок 3 — Схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором

    Источник

    

    Как сделать простой регулятор тока для сварочного трансформатора

    Как сделать простой регулятор тока для сварочного трансформатораВажной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

    Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

    Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше.

    Читайте также:  Расчет неразветвленной электрической цепи переменного тока практическая работа

    После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.

    Схема регулятора сварочного тока

    При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часы».

    Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

    Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

    Схема регулятора сварочного тока

    Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

    Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

    Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

    В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

    Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

    Как сделать простой регулятор тока для сварочного трансформатора

    Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

    Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

    Источник

    Трансформатор напряжения регулировка тока

    Электронный трансформатор — регулировка мощности

    Автор: Blaze, cornage@bk.ru
    Опубликовано 30.10.2016
    Создано при помощи КотоРед.

    Электронный трансформатор — регулировка мощности.

    В данной статье расскажу о давно набравшем популярность среди радиолюбителей устройстве, о котором упоминалось в радиожурналах ещё в 70-е годы. Уже в то время многие радиолюбители использовали для питания своих конструкций, таких как усилители мощности, автогенераторные импульсные источники питания (ИИП). Широкое распространение среди радиолюбителей получил автогенераторный полу-мостовой инвертор (Полумост). При использовании пропорционально-токового управления высоковольтными биполярными транзисторами, достигается хороший КПД преобразователя. В наше время такой автогенераторный полумост нашёл своё применение как замена крупногабаритного сетевого трансформатора. Данное устройство можно найти в любом хозяйственном или магазине электротоваров. Скрывается же наш простейший ИИП под названием –Электронный трансформатор.

    Многие радиолюбителей конструируют на основе такого простейшего импульсника различные блоки питания, зарядные устройства, различные индукционные нагреватели, используют вместо привычного сетевого трансформатора для питания низковольтных паяльников и естественно для питания низковольтных ламп накаливания.

    Чаще всего блок питания на основе такого устройства делается путём подключения к выходу электронного трансформатора двух-полупериодного или мостового выпрямителя на ультра-быстрых диодах, или диодах Шоттки.

    После получения постоянного напряжения на выходе получившегося импульсного блока питания можно подключать различную нагрузку. Для запуска без нагрузки вводят ОС по напряжению, но не каждому хватает терпения и смекалки для настройки стабильной работы этой ОС.

    Иногда может потребоваться регулировка выходного напряжения, например :

    -регулировка оборотов микро-дрели

    -регулировка температуры низковольтного паяльника

    -регулировка яркости ламп накаливания (диммирование)

    -регулировка тока заряда АКБ

    Данные функции вполне реально осуществить на любом электронном трансформаторе (Feron, Taschibra и т.д.) и при любой мощности этого простого, дешёвого и компактного импульсника.

    Давайте рассмотрим схему большинства таких электронных трансформаторов.

    На транзисторах Q1 и Q2, конденсаторах C1, C2, также на силовом трансформаторе и коммутирующем T1, собран полу-мостовой автогенераторный инвертор. Выпрямленное сетевое напряжение поступает на делитель из конденсаторов C1,C2 и силовые транзисторы. Попеременно открываясь транзисторы поочерёдно проводят ток. Первичная обмотка силового трансформатора подключена к делителю из конденсаторов и к средней точке соединения транзисторов. При подаче запускающего импульса от цепи автозапуска, транзистор Q2 открывается и ток от конденсаторного делителя течёт через первичную обмотку силового трансформатора и транзистор Q2. После Q2закрывается, при этом открывается транзистор Q1, ток протекает от конденсаторного делителя, через первичную обмотку силового тр. И транзистор Q1. В конце каждого полупериода сети инвертор отключается и происходит перезапуск от дополнительной цепи.

    На элементах R2,R3,D5,C3,D6 собрана цепь авто-запуска, которая в начале каждого полупериода сети запускает полу-мостовой автогенераторный ИИП. Конденсатор C3 заряжается до напряжения пробоя симметричного динистора D6, которое равно 32в. При достижении этого напряжения динистор DB3 открывается, C3 разряжается через динистор на базу Q2, происходит запуск схемы.

    Изменяя время формирования запускающего импульса, можно добиться запуска инвертора как вначале, середине, так и к концу полу-периода . Тем самым становится возможной регулировка выходной мощности данного блока питания. Принцип регулировки здесь как и у симисторного регулятора мощности.(Фазовый метод регулировки).

    В таком виде схема запуска не пригодна для корректной регулировки, её нужно немного изменить. Однако мне попался электронный трансформатор с более подходящей для регулировки схемой запуска. Потребовалось заменить резистор 470к на 100к и последовательно с ним припаял переменный резистор на 680к, конденсатор 10нф заменил на 68нф 250в.

    Наткнулся случайно на данную схему, заработало всё с первого раза.

    Жирным шрифтом указал используемые в своёт эл.трансе транзисторы и номинал используемого потенциометра.

    Первый запуск как всегда делаем через лампу накаливания на 60вт и с мелкой нагрузкой. Без нагрузки страховочная лампа светиться недолжна.

    Регулировка получилась плавной, галогенные лампочки можно регулировать от тусклого свечения нити, до максимума накала. Также переделка позволяет сделать простое зарядное устройство для автомобильного аккумулятора, с добавлением всего лишь выпрямителя на ультра-быстрых диодах или на сборке Шоттки.

    Также есть видео, в котором переделываю данный электронный трансформатор под регулировку мощности + демонстрация данного устройства в работе (https://youtu.be/J7LbjTdBvAw).

    Надеюсь многим придётся по душе данная переделка, которая совмещает в себе лёгкость и компактность электронного трансформатора,его мощьность и функцию симисторного регулятора мощности на борту.

    Источник