Меню

Трансформатор переменного тока бытовой

Трансформатор для дома

Нестабильное напряжение в электрической сети – проблема нередкая и влекущая за собой неприятные последствия от поломок электроприборов до порчи электрической проводки и возгораний. Частично решить самые разнообразные неполадки можно, установив трансформатор для дома – статистический электроаппарат, используемый для преобразования электрического тока или напряжения.

Проблемы в электрических сетях

Изначально электричество подаётся через линии электропередач от повышающих трансформаторов поставщика и может проходить до нескольких сотен километров до отдельного дома. При установке понижающего агрегата на несколько домов-потребителей нагрузки будут подразделяться между всеми подключенными домами.

Проблемы в электрических сетях

Гораздо выгоднее, хотя и дороже, установить индивидуальный трансформатор для дома – таким образом внутренняя электрическая сеть будет получать уже пониженный до 220В ток.

В случаях, когда в электрической сети наблюдается регулярная просадка напряжения, при которой приборы не в состоянии функционировать в полную силу, решить проблему можно установкой повышающего трансформатора.

Проблемы в электрических сетях

Виды и классификация

В зависимости от технических свойств и сферы применения, трансформаторы подразделяются достаточно разнообразно. Основными параметрами классификации трансформаторов являются:

  • количество фаз;
  • число обмоток;
  • класс точности – колебания максимально возможных значений погрешностей;
  • способ охлаждения;
  • тип размешения.

Если работа трансформатора направлена на регулировку электрического тока, то аппарат так и называется – трансформатор тока. В случае, когда устройство призвано регулировать напряжение, это будет трансформатор напряжения.

Виды и классификация

На направление перемен величины напряжения влияет такой показатель, как соотношение количества обмоток прибора:

  • первичной, принимающей напряжение;
  • вторичной, передающей изменённое значение напряжения электрического тока.

В случае, когда трансформатор имеет во вторичной обмотке большее число витков, чем в первичной, он относится к повышающим, при меньшем количестве – к понижающим.

Трансформатор для дома

На мощность трансформатора влияет сечение проводов обмоток, а на вес и размер – тип сердечника и материалов изготовления проводов. По исполнению трансформаторы делятся на однофазные и трёхфазные.

Самым лёгким и малогабаритным считается автотрансформатор, обеспеченный всего одной обмоткой. Также автотрансформаторы являются наиболее бюджетным вариантом и часто используются в приборах автоматического управления, а также применяются в высоковольтных электрических сетях. Единственным недостатком такого трансформатора является отсутствие гальванической развязки.

Виды и классификация

При подаче и приёме электричества на линии электропередач и обратно используются силовые трансформаторы, в электроприборах сетевые. Также существуют лабораторные, измерительные, импульсные и другие виды трансформаторов.

Трансформаторы напряжения

Трансформатором напряжения называется статический (неподвижный) электромагнитный прибор, меняющий значения переменного напряжения. По назначению такие устройства разделяют на несколько видов:

  • силовые – используются в электроснабжении как для повышения (для передачи его на дальние расстояния), так и для понижения (до рабочих значений устройств-потребителей) напряжения;
  • технологические – устройства повышенных мощностей, применяются с технологическими целями (сварочными, печными и другими);
  • маломощные – питают теле- радиоаппаратуру, бытовую технику, а также применяются в схемах различной электроники;
  • измерительные – применяются с целью расширения границ измерения приборов.

Трансформаторы напряжения

Применяются трансформаторы напряжения как для его измерения, так и для контроля параметров мощности. Эффективно питают электрические цепи автоматики, сигнализационные устройства, а также используются при защите линий электропередач.

Повышающие трансформаторы

Являются силовыми конструкциями, используемыми в электрических цепях бытовых либо производственных назначений, меняя напряжение в направлении повышения.

По характеристикам и областям использования различают следующие виды повышающих напряжение устройств:

  • автотрансформатор – однофазный прибор с одной обмоткой;
  • трансформатор тока – устройство с использованием нескольких обмоток, сердечника, оборудованный резисторами и оптическими датчиками;
  • устройство силового типа – предназначен для передачи тока между контурами посредством электромагнитной индукции;
  • антирезонансный агрегат – полностью закрытое однофазное или трёхфазное устройство;
  • заземляемые устройства – имеют специальные типы обмотки;
  • пик-трансформаторы – применяются с целью для разделения постоянного и переменного токов;
  • домашние бытовые агрегаты – передают электричество от источника тока к прибору потребителю, предотвращают помехи в работе приборов.

Повышающие трансформаторы

Трансформаторы, преобразующие напряжение из 220В в 380В, широко используются в трёхфазных сетях производственных зон. С их помощью легко решаются проблемы создания дополнительных линий электрического питания. Кроме того, данные агрегаты помогают симметрично распределять нагрузки по фазам сети в местах, где отсутствует сеть 380В.

Повышающий трансформатор для дома

Необходимость купить повышающий трансформатор для дома возникает в случае, когда напряжение в электрической сети не достигает требуемых 220 В. Однако следует помнить, что устройство обладает постоянным коэффициентом трансформации. Это значит, что при достижении в сети стабильного напряжения электричества, на выходе значение будет существенно превышать требуемое для питания электроприборов, что может привести к их поломке.

Повышающий трансформатор для дома

Существует вариант приобретения регулируемого устройства, в котором предусмотрен ручной контроль напряжения на выходе.

Стоит знать, что установка дома промышленных трансформаторов может быть крайне опасна в связи с использованием для их охлаждения специализированных масел.

Понижающие трансформаторы

Для отдельных приборов, используемых в быту, напряжение в 220В является излишним – для их подключения рекомендуется использовать понижающие трансформаторы (220 на 15 вольт или 220 на 10 вольт).

Понижающие трансформаторы

К преимуществам использования данных мини-трансформаторов для дома можно отнести:

  • защита от поражения электрическим током и возникновения возгорания (особенно актуально в банях, ванных комнатах и прочих помещения, обладающих повышенной влажностью);
  • экономия потребления электроэнергии (низковольтные осветительные приборы потребляют в разы меньше энергии, чем обычные);
  • продление срока службы приборов.

Виды и классификация

Зарядные устройства для телефонов, ноутбуков и прочих гаджетов уже имеют встроенные трансформаторы, а вот при монтаже низковольтного освещения с использованием светодиодных и галогенных ламп, требуется самостоятельная установка устройств для понижения напряжения.

Итак, купить трансформатор для частного дома или дачи не составит трудностей, если внимательно изучить виды и предназначение различных типов устройств. Правильный выбор поможет обеспечить наличие требуемых для работы приборов мощностей без риска выхода техники из строя.

Источник

Трансформатор

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

Читайте также:  Комплекты защиты от поражения электрическим током

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Источник



Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформаторы

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

Схематичное устройство трансформатора

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Читайте также:  Управляемые реле переменного тока

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Читайте также:  Принцип работы электромотора постоянного тока

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Источник

Трансформаторы для дома: обзор, характеристики, советы по выбору

Нестабильное напряжение электросети может повлечь за собой неприятные последствия — от неисправностей электроприборов до выхода из строя проводки и возгораний. Устранить большинство неполадок можно посредством установки трансформатора для частного дома — статического аппарата, способного преобразовывать напряжение или электрический ток.

Проблемы в электрических сетях

Электричество поставляется в домах через линии электропередач и повышающие трансформаторы поставщика, преодолевая несколько сотен километров. Нагрузки будут разделяться между подключенными домами после установки понижающего агрегата. Установка индивидуального трансформатора гораздо выгоднее, но при этом дороже — внутренняя электрическая сеть будет получать ток, пониженный до 220 В.

трансформатор для дома

Проблему регулярной просадки напряжения в электрической сети, при которой приборы не могут нормально функционировать, можно решить посредством установки повышающего трансформатора.

Классификация и виды

Трансформаторы разделяются на несколько типов в зависимости от области применения и технических характеристик. Основными параметрами классификации считаются:

  • Количество обмоток.
  • Число фаз.
  • Способ охлаждения.
  • Класс точности или возможные погрешности.
  • Тип размещения.

Трансформаторы, предназначенные для регулировки электрического тока, носят наименование трансформаторов тока. Если же прибор регулирует напряжение, то он именуется трансформатором напряжения.

повышающий трансформатор для дома

Напряжение меняется в зависимости от количества обмоток трансформатора:

  • Первичная принимает напряжение.
  • Вторичная передает измененное напряжение.

Повышающим трансформатор для дома зовется в случае, если у него количество витков во вторичной обмотке больше, чем в первичной, в противном случае он понижающий.

Сечение проводов обмотки влияет на мощность трансформатора, материалы изготовления проводов и тип сердечника — на размер и вес прибора. Все устройства по типу исполнения подразделяются на трехфазные и однофазные.

Простейшим трансформатором с минимальным весом и компактными габаритами считается автотрансформатор с одной обмоткой. Такие модели являются бюджетными вариантами и чаще всего применяются в автоматических устройствах и высоковольтных электрических сетях. Автотрансформаторы не обладают гальванической развязкой, что является их недостатком.

Силовые трансформаторы применяются при подаче и приеме электричества на линии электропередач и обратно. Электроприборы комплектуются сетевыми приборами.

Советы по выбору

Перед приобретением стабилизатора напряжения необходимо определиться с тем, нужен он или нет, однако для профилактики его все же стоит устанавливать, поскольку напряжение в электрических сетях нередко различается.

ресанта асн

При выборе мини-трансформатора учитываются следующие характеристики:

  • Число фаз.
  • Выходная мощность.
  • Масса прибора.
  • Габариты трансформатора.
  • Эксплуатационный срок.
  • Рабочий диапазон напряжения.
  • Скорость реакции на скачки напряжения.

Обязательно уточняется нагрузка конкретных приборов. Однофазовые трансформаторы приобретаются для бытовых приборов небольшой мощности, трехфазовые стабилизаторы — для большого количества приборов с необходимостью в распределении нагрузки.

Одним из самых популярных и востребованных трансформаторов считается «Ресанта АСН» — однофазовый цифровой стабилизатор, обладающий доступной ценой в 2600 рублей. Такой трансформатор крепится на стену.

стабилизатор штиль

Более дорогой и надежной моделью является стабилизатор «Штиль». Его примерная стоимость составляет 4000 рублей. Стабилизатор «Штиль» оптимально подходит для защиты электронной техники и бытовых приборов при переменном напряжении.

Трансформаторы напряжения

Трансформаторы напряжения — статические электромагнитные приборы, изменяющие переменное напряжение. Подобные стабилизаторы подразделяются на несколько категорий в зависимости от назначения:

  • Силовые. Применяются для повышения и понижения напряжения, что позволяет передавать ток на дальние расстояния и к устройствам-потребителям.
  • Технологические. Приборы повышенной мощности, используемые с технологическими целями — печными, сварными и прочими.
  • Маломощные. Устанавливаются на теле- и радиоаппаратуру, бытовые приборы и различные электронные схемы.
  • Измерительные. Применяются для расширения границ измерения устройств.

мини трансформатор

Трансформаторы напряжения могут использоваться как для контроля, так и для измерения напряжения и мощности. Могут питать сигнализационные системы, электрические цепи автоматики и эффективно защищают линии электропередач.

Повышающие трансформаторы

Это силовые приборы, устанавливаемые в электрических цепях бытового или производственного назначения и повышающие напряжение. В зависимости от области использования и характеристик трансформаторы для дома подразделяются на несколько видов, подающих напряжение:

  • Автотрансформатор. Однофазный однообмоточный прибор.
  • Трансформатор тока. Стабилизатор, состоящий из сердечника, нескольких обмоток, оптических датчиков и резисторов.
  • Силовые устройства. Передача тока между контурами осуществляется при помощи электромагнитной индукции.
  • Антирезонансные стабилизаторы. Закрытые однофазные или трехфазные приборы.
  • Заземляемые трансформаторы. Оснащены обмоткой специального типа.
  • Пик-трансформаторы. Разделяют переменный и постоянный токи.
  • Трансформаторы для дома. Предназначены для передачи электричества от источника к прибору-потребителю и устранения помех в работе бытовых устройств.

трансформатор для частного дома

В трехфазных сетях производственных зон в основном используются трансформаторы, преобразующие напряжение из 220 в 380 В. Они позволяют создавать дополнительные линии электропередач и симметрично распределяют нагрузки по фазам при отсутствии сети 380 В.

Домашние повышающие трансформаторы

Устанавливаются в ситуациях, когда напряжение электрической сети менее требуемых 220 В. Такие модели обладают постоянным коэффициентом трансформации: при стабильном напряжении электросети итоговый показатель будет значительно выше необходимого для питания электроприборов, что может стать причиной их поломки. Контроль выходного напряжения предусмотрен на некоторых моделях в ручном режиме. Промышленные трансформаторы устанавливать дома нельзя, поскольку их работа может быть опасна ввиду использования специализированных масел для охлаждения.

Понижающие трансформаторы

Для подключения приборов, напряжение в 220 В для которых слишком высоко, устанавливают понижающие трансформаторы на 15 или 10 вольт. Преимуществами таких трансформаторов для дома являются следующие характеристики:

  • Защита от возгорания и поражения электрическим током, что актуально при использовании подобных устройств в помещениях с высоким уровнем влажности — ванных комнатах, банях и прочих.
  • Минимальное потребление электроэнергии — осветительные приборы низковольтного типа потребляют в несколько раз меньше энергии, в отличие от стандартных.
  • Увеличение эксплуатационного ресурса приборов.

понижающий трансформатор

Зарядные устройства различных гаджетов и бытовых устройств оснащаются интегрированными трансформаторами, в связи с чем они не требуют установки подобных стабилизаторов. Самостоятельная установка трансформаторов для дома необходима при монтаже низковольтного освещения, основанного на галогенных и светодиодных лампах.

Резюме

Приобретение трансформатора для домашнего использования в большинстве случаев является необходимым решением и не представляет труда при условии внимательного изучения классификации приборов и их предназначения. Корректный подбор стабилизаторов обеспечивает необходимую для работы бытовых приборов мощность без риска поломки техники и выхода ее из строя. Установка трансформаторов может производиться как самостоятельно, так и после обращения к специалистам.

Источник