Меню

Цифро аналоговые преобразователи суммирование токов

ЦАП или цифро-аналоговый преобразователь от «А» до «Я»

Полное руководство по выбору и эксплуатации

ЦАП или цифро-аналоговый преобразователь от «А» до «Я»

Полное руководство по выбору и эксплуатации

Цифровая стереосистема не может обойтись без цифро-аналогового преобразователя (ЦАП’а, DAC’а) – компонента, преобразующего двоичный код в аналоговый сигнал. На сегодня именно digital-направление в Hi-Fi/High End развивается быстрее всего – надеемся, что данная мини-энциклопедия ЦАП’ов послужит надежным подспорьем при выборе техники себе домой.

Что такое ЦАП?

DAC

Цифровая музыка записывается хранится в файлах, существует как поток цифровых данных, либо размещается на физических носителях (CD, SACD) — в виде двоичного набора данных. Скажем, компакт-диск записан с измерениями 44 100 раз в секунду (44,1 кГц), каждое из которых сохраняется с точностью 16 бит. Hi-Res треки щеголяют уже разрядностью 24-32 бит, частотой дискретизации 192-768 кГц. Сигнал же, который поступает на предварительные, интегральные или усилители мощности, должен быть аналоговым – то есть, состоящим из тока, напряжения, заряда. Цифро-аналоговый преобразователь – это мостик между «прерывистым» (дискретным) потоком данных в цифре и непрерывными аналоговыми сигналами.

Как работает цифро-аналоговый преобразователь

DAC

Большинство ЦАП’ов получают на вход сигнал в импульсно-кодовой модуляции (PCM, что расшифровывается, как pulse-code modulation) или плотностно-импульсной модуляцией (PDM, Pulse Density Modulation), используемой в однобитном потоке данных формата DSD (Direct Stream Digital). Также устройство может принимать сжатые сигналы (скажем, MP3) или пакетные системы данных (например, MQA). Задачей цифро-аналогового преобразователя, все равно, в итоге является перевод «нулей и единиц» в непрерывную аналоговую форму.

Характеристики ЦАП’а

DAC

Помимо сугубо профессиональных или нормативных ТТХ, таких, как напряжение питания, статическая характеристика преобразования, статическая нелинейность, смещение нуля и монотонность, в бытовой технике принято обращать внимание на следующие важные характеристики устройства:
— разрядность – то есть, количество уровней аналогового сигнала, которое может воспроизводить ЦАП. Для N разрядного ЦАП число уровней аналогового сигнала равно 2N (включая значение для нулевого кода);
— частота дисктеризации – максимальная частота, с которой можно изменять входной код ЦАП, получая при этом корректный результат на выходе;
— соотношение «сигнал/шум» или SNR — отношение амплитуды восстанавливаемого гармонического сигнала к сумме амплитуд всех остальных гармоник в спектре выходного сигнала, кроме кратных;
— типы поддерживаемых форматов данных.

Форматы цифровых данных

DAC

Как уже упоминалось, цифровые данные (в виде файла или потока трансляции) могут быть различных форматов. Главным тут является тип этих данных по отношению к возможным потерям – таким образом, можно сформировать три основные группы digital-представлений:
— форматы без сжатия данных или «сырые» — сюда относятся WAV, AIFF, RAW, DSD, DXD;
— форматы со сжатием без потерь (APE, FLAC, MQA, WavPack, Monkey’s Audio и другие);
— форматы со сжатием с потерями (MP3, AAC, Vorbis и прочие).

Наилучшими, конечно, являются «сырые» данные. Сжатие без потерь теоретически приближено к ним, но такой подход забирает часть мощностей системы на декодирования – из-за этого в Ultra High End системах принято оперировать именно форматами без сжатия.

Что мы слышим?

DAC

Человек номинально слышит звуки в диапазоне от 16 до 20 000 Гц, но предел в 20 000 Гц достаточно условен, с возрастом слух немного снижается – так, большинство взрослых людей распознают звуки только до 16 000 Гц. Тем не менее, частоты в 20 000 Гц, 25 000 Гц и даже выше могут ощущаться через органы осязания. По сути, прослушивая музыку, мы получаем комплексное воздействие на почти все наши органы чувств – отсюда и критически важная значимость в точности передачи всех параметров исходного материала. И реальная работа по улучшению саунда у супертвитеров колонок, которые расширяют полосу воспроизведения.

Виды цифро-аналоговых преобразователей

DAC

ЦАП’ы делятся на две большие группы по типу преобразования. Первая из них – последовательные цифро-аналоговые преобразователи, в них входящий сигнал преобразуется в аналоговый сигнал поразрядно, а для всех разрядов используется одна и та же схема. Такой подход гарантирует компактность, но требует повышения разрядности – так как скорость преобразования обратно пропорциональна ей. В сегменте последовательных ЦАП’ов могут использоваться:
— широтно-импульсные модуляторы: источник тока или напряжения включается на время, а полученная импульсная последовательность фильтруется;
— циклические ЦАП’ы;
— конвейерные ЦАП’ы;
— и, наконец, столь хорошо знакомые всем аудиофилам цифро-аналоговые преобразователи передискретизации – например, дельта-сигма ЦАП’ы.

Передискретизация оказалась настоящим спасением для подобных схем, так как она позволила использовать ЦАП с меньшей разрядностью для достижения большей разрядности (ничего себе парадокс). Импульсный сигнал с модулированной плотностью импульсов, формируемый отрицательной обратной связью (которая также является фильтром ВЧ, отсекающим шумы квантования), в дельта-сигма ЦАП’ах гарантирует исключительную линейность, а сама система обеспечивает необходимую скорость переключения (сотни тысяч раз в секунду). Чем выше частота передискретизации у таких схем, тем ниже требования к фильтрации НЧ и лучше подавление шумов квантования. И, наконец, дельта-сигма ЦАП’ы весьма дешевы – вот и все секреты их массового распространения!

Вторая группа ЦАП’ов – параллельные цифро-аналоговые преобразователи. Их принцип основан на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда (суммируются только токи разрядов, значения которых равны единице).Эти преобразователи дороже, так как основываются на резистивных матрицах – которые сложны в производстве. В параллельных ЦАП’ах применяются схемы с весовыми источниками тока, весовыми резисторами и многозвенные цепные схемы.

Параллельные ЦАП’ы использую следующие архитектуры (способы формирования итогового аналогового сигнала):
— бинарные, в которых соотношение двух соседних взвешивающих элементов равно 2, а веса элементов, формирующих выходной сигнал, в нормированном виде, будут равны 1, 2, 4, 8, 16 и так далее, система управляется бинарным кодом;
— унитарные — соотношение двух соседних взвешивающих элементов равно единице, а управление системой ведется унитарным кодом;
— Фибоначчи – в данном случае сигнал формируется в системе счисления Фибоначчи;
— сегментные – в них цифровой код разделяется на группы, которые обрабатываются независимо.

Читайте также:  По длинному тонкому проводнику течет ток

Вне зависимости от архитектуры, параллельные цифро-аналоговые преобразователи используют элементы, взвешивающие аналоговый сигнал – конденсаторы, резисторы или источники тока. Как правило, применяются конденсаторы, резисторы и транзисторов в роли резисторов, а также транзисторы в режиме насыщения (источники тока).

Параллельные цифро-аналоговые преобразователи разделяются на два типа:
взвешивающие (каждому биту цифрового сигнала соответствует резистор или источник тока) – достаточно быстрые, но менее точные, так как для функционирования требуется набор различных прецизионных источников или резисторов; их разрядность ограничена восемью битами;
— лестничные (R2R-схемы) – в них значения создаются в матрице (токов или напряжений) постоянного импеданса, набранной из резисторов с сопротивлениями R и 2R.
Использование идентичных элементов существенно повышает точность и увеличивает разрядность – она может достигать 22 бит.

Зачем в аудиосистеме отдельный ЦАП?

DAC

Принятое и однозначно правильно решение – использовать в стереосистеме Hi-Fi/High End отдельный цифро-аналоговый преобразователь. Действительно, во многих современных интегральных или предварительных усилителях уже есть модуль (или он может быть использован опционально, при конфигурировании устройства при покупке) ЦАП’а. Да еще и, как правило, этот ЦАП будет использовать современный чип с отличными параметрами! Однако, главное в преобразователе – питание и независимость всех схем, а не примененная микросхема (об этом мы расскажем ниже). Поэтому, только отдельный цифро-аналоговый преобразователь обеспечит в вашей системе наилучшие параметры.

Если же рассуждать о преобразовании сигнала в целом, то проблему следует разделить на две части:
— отсутствие поддержки форматов данных – недорогие устройства могут «не уметь» работать с современными сигналами, скажем РСМ 32/768 или DSD256, что доставит неудобства в функционировании;
— набора фирменных «родовых болячек» цифрового звука – прежде всего искажений из-за потери синхронизации (эффекта джиттера, дрожания сигнала) – несоблюдения временных интервалов.

Для устранения первого момента многие производители используют современные преобразующие чипы, для нивелирования второго – работают над улучшением тактования сигнала, вводя прецизионные «часы» — задающие тактовые генераторы.

DSD или PCM?

DAC

Если говорить сигналах с разрешением выше, чем у CD, то однозначного ответа при выборе Hi-Res контента нет. Все зависит от мастеринга записи и от параметров самого преобразователя. Формат DSD (Direct Stream Digital) был разработан компанией Sony в противовес PCM и изначально использовался в студиях и при записи дисков Super Audio CD (SACD). Его файловые возможности сегодня, по мнению ряда аудиофилов, превышают параметры, которые выдает даже высокобитрейтный РМС (24-32/768) — широтно-импульсная модуляция (ШИМ) с одноразрядным кодированием на сверхвысоких частотах иногда может выглядеть лучше. Ряд производителей использует в своих ЦАП’ах схемы с автоматическим переводом всех входящих потоков в DSD-формат, другие, напротив, предпочитают только РСМ-сигналы, считая их более «правильными».

Как выбрать ЦАП?

DAC

Определитесь с параметрами приема сигналов, которые вам нужны. В принципе, наверное, сейчас нет смысла приобретать устройство с поддержкой только форматов РСМ 16/44 – Hi-Res уже прочно вошел в нашу жизнь.
Тип преобразователя – самый сложный выбор. На рынке бытовало мнение, что только R2R-системы способны обеспечить настоящее High End качество, однако, в последнее время ряд производителей выпустил революционные устройства на базе обычных дельта-сигма микросхем (например, Lampizator Pacific). Так что, тут все зависит от конечной схемы ЦАП’а — именно она определяет звучание.

Далее, если предполагается использовать стриминг с потоковых музыкальных сервисов, следует обратить внимание на поддержку формата MQA, ориентированным как раз на такие трансляции. Если ваша медиатека состоит из большого числа файлов в DSD – конечно же, цифро-аналоговый преобразователь должен поддерживать такой формат.
В целом, нет смысла гнаться далее за параметрами основной преобразующей микросхемы – многие производители используют старые классические чипы и добиваются от них феноменального звучания. Главное в ЦАП’e – система организации питания, часы и вся прочая «обвязка», которая, по сути, и формирует звук.

На какие параметры ЦАП’а еще обратить внимание?

DAC

Подключение ЦАП’а к компьютеру

DAC

Софт-плееры для цифро-аналоговых преобразователей

DAC

Стриминг музыкального сигнала, стримеры и музыкальные серверы

DAC

Кабели для подключения ЦАП’ов

DAC

Недостатки современных ЦАП’ов

DAC

Как купить ЦАП?

DAC

На что обратить внимание при эксплуатации цифро-аналогового преобразователя?

DAC

ЦАП’ы достаточно долго прогреваются – хорошие параметры эта техника начинает обеспечивать не менее, чем через 30-40 часов работы, а оптимальные – через 200 часов работы. Будьте готовы к этому. В процессе эксплуатации не следует допускать перегрева устройства – располагать технику в проблемных для теплоотведения местах. Для улучшения звучания на верхнюю панель ЦАП’а можно положить утяжеляющий груз. Собственно, на этом хитрости заканчиваются.

Примеры цифро-аналоговых преобразователей в различных ценовых категориях

DAC

Parasound Z-dac v2 (53 400 руб.) основан на схемах Texas Instruments TAS1020B (USB Streaming Controller), Analog Devices AD1895 (Sample Rate Converter) и Analog Devices AD1853 (D to A Converter).

DAC

Chord Electronics Qutest (135 400 руб.) – в устройстве применена схема Xilinx Artix 7 (XC7A15T) FPGA, аппарат поддерживает РСМ 32/768 и DSD512.

DAC

Mytek Brooklyn DAC+ (275 000 руб.) использует чип Sabre 9028 Pro 32/384 и поддерживает DSD до DSD256.

DAC

MSB Reference (3 199 999 руб.) – пример высокотехнологичного устройства: 4 гибридных мультибитных модуля c эффективyым разрешением 28,5 бит на канал (384 кГц), цифровой фильтр Shark DSP 80 бит, сверхстабильный тактовый генератор Femto 140 Clock.

DAC

Audio Note Fifth Element (12 300 300 руб.) – один из самых дорогих ЦАП’ов в мире, построенный на базе классического R2R-чипа Analog Devices AD1865N, ламп 1 x 5814a, 1 x 6463, 1 x EF800, 1 x 6X5 и полностью серебряных трансформаторов.

Читайте также:  Найти действующее значение силы тока решение

Источник

Цифроаналоговые преобразователи (ЦАП), принцип работы, типы

рис. 3.88Что такое ЦАП?

Цифроаналоговые преобразователи (ЦАП) — предназначены для преобразования цифровых сигналов в аналоговые. Такое преобразование необходимо, например, при восстановлении аналогового сигнала, предварительно преобразованного в цифровой для передачи на большое расстояние или хранения (таким сигналом, в частности, может быть звук). Другой пример использования такого преобразования — получение управляющего сигнала при цифровом управлении устройствами, режим работы которых определяется непосредственно аналоговым сигналом (что, в частности, имеет место при управлении двигателями).

Васильев Дмитрий Петрович

Разрешающая способность — величина, обратная максимальному числу шагов квантования выходного аналогового сигнала. Время установления tуст — интервал времени от подачи кода на вход до момента, когда выход­ной сигнал войдет в заданные пределы, определяемые погрешностью.

Погрешность нелинейности — максимальное отклонение графика зависимости выходного напряжения от напряжения, задаваемого цифровым сигналом, по отношению к идеальной прямой во всем диапазоне преобразования.

Как и рассматриваемые аналого-цифровые преобразователи (АЦП), ЦАП являются «связующим звеном» между аналоговой и цифровой электроникой. Существуют различные принципы построения АЦП.

Схема ЦАП с суммированием весовых токов

рис. 3.88

На рис. 3.88 приведена схема ЦАП с суммированием весовых токов.

Ключ S5 замкнут только тогда, когда разомкнуты все ключи S1…S4 (при этом uвых= 0). U

— опорное напряжение. Каждый резистор во входной цепи соответствует определенному разряду двоичного числа.

По существу этот ЦАП — инвертирующий усилитель на основе операционного усилителя. Анализ такой схемы не представляет затруднений. Так, если замкнут один ключ

что соответствует в первом и нулям в остальных разрядах.

Абрамян Евгений Павлович

где Si ,i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

Состояние ключей определяется входным преобразуемым кодом. Схема проста, но имеет недостатки: значительные изменения напряжения на ключах и использование резисторов с сильно отличающимися сопротивлениями. Требуемую точность этих сопротивлений обеспечить затруднительно.

ЦАП на резистивной матрицы R — 2R

рис. 3.89

Рассмотрим ЦАП на основе резистивной матрицы R — 2R(матрицы постоянного сопротивления) (рис. 3.89).

В схеме использованы так называемые перекидные ключи S1…S4, каждый из которых в одном из состояний подключен к общей точке, поэтому напряжения на ключах невелики. Ключ S5 замкнут только тогда, когда все ключи S1…S4 подключены к общей точке. Во входной цепи использованы резисторы всего с двумя различными значениями сопротивлений.

Васильев Дмитрий Петрович

Пусть каждый из ключей S1…S4 подключен к общей точке. Тогда, как легко заметить, напряжение относительно общей точки в каждой следующей из точек «a»…«d» в 2 раза больше, чем в предыдущей. К примеру, напряжение в точке «b» в 2 раза больше, чем в точке «а» (напряжения Uа, Ub, Uc и Ud в указанных точках определяются следующим образом:

Допустим, что состояние указанных ключей изменилось. Тогда напряжения в точках «a»…«d» не изменятся, так как напряжение между входами операционного усилителя практически нулевое.

Из вышеизложенного следует, что:

где Si , i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

ЦАП для преобразования двоично-десятичных чисел

Рассмотрим ЦАП для преобразования двоично-десятичных чисел (рис. 3.90).

рис. 3.90

Для представления каждого разряда десятичного числа используется отдельная матрица R − 2R (обозначены прямоугольниками). Z…Z3 обозначают числа, определенные состоянием ключей каждой матрицы R − 2R.

Источник



ЦАП с суммированием весовых токов

Цифро-аналоговый преобразователь.

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода.

На рис. 9.11 представлена классификационная схема ЦАП по схемотехническим признакам.

ЦАП с суммированием весовых токов

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда – 2 2 =4, у второго – 2 1 =2 и у младшего (МЗР) – 2 0 =1. Если вес МЗР IМЗР=1 мА, то IСЗР=8 мА, а максимальный выходной ток преобразователя Iвых.макс=15 мА и соответствует коду 11112. Очевидно, что коду 10012, например, будет соответствовать Iвых=9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 9.12.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением 9.2.

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем:

DR / R=2 –k (9.3)

Из условия 9.3 следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде – 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает рядом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме представленой на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Читайте также:  Устройство проверки тока утечки

Рис. 9.3. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 9.13), который должен удовлетворять следующему условию: если он нагружен на сопротивление Rн, то его входное сопротивление Rвх также должно принимать значение Rн. Коэффициент ослабления цепи a=U2/U1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

При двоичном кодировании a =0,5. Если положить Rн=2R, то

Rs=R и Rp=2R (9.5)

в соответствии с рис.9.13.

Поскольку в любом положении переключателей Sk они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление Rвх=R. Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 9.13, выходные токи схемы определяются соотношениями

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей Sk соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от Uоп линейно, преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R ключей с разрядными токами. Особенно это важно для ключей старших разрядов.

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Порядка 10-15 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Около 2,5 мВт.

Динамические параметры ЦАП относятся к изменению выходной величины при переключении входного кода (переходная характеристика). Анализ переходной характеристики усложняется конечным временем установления значения и наличием выбросов (glitch impulse) или, так называемых гличей. Глич определяется как площадь выброса выходного сигнала при переключении (рис.9.14). Причиной появления гличей является не одновременность переключения отдельных битов ЦАП и конечность времени переключения, причем худшей считается ситуация при замене максимального числа единиц младших разрядов единицей старшего (главный межкодовый переход 01..11->10..00).

Для уменьшения выбросов на выходе ЦАП можно установить устройство выборки и хранения (УВХ), который вводить в режим фиксации непосредственно перед очередной сменой кода, а выводить из фиксации уже после завершения выброса (рис.9.15). Это позволит значительно уменьшить результирующий коэффициент гармоник выходного сигнала ЦАП.

Время установления определяется, как время, за которое сигнал после выброса перестанет выходить за пределы определенной величины (в разной литературе — 1/2 или 1 от величины младшего разряда). Существует зависимость скорости нарастания, времени установления, величины гличей от параметров нагрузки. Паразитные емкости деталей схемы и емкость монтажа ухудшают эти параметры. Всплески выходного сигнала при изменении данных на входе, наводки тактовой серии также вносят искажения в выходной спектр.

Параметры ЦАП

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2N-1 через единицу младшего разряда (ЕМР) выходной сигнал Uвых(t) образует ступенчатую кривую. Такую зависимость называют характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 9.16), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Источник

5.3. Цифро-аналоговые преобразователи с суммированием весовых токов

Цифро-аналоговый преобразователь с суммированием весовых токов состоит из параллельно соединенных через разрядные ключи двоично взвешенных резисторов, номиналы которых меняются по закону 2 i , источника опорного напряжения UОП и нагрузки RН (рис. 5.5). В качестве ключей обычно используются переключатели на полевых транзисторах, управляемые значениями входного кода. Действие ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1 (рис. 5.5, а, ключ Si замкнут).

Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда вес будет равен: 2 3 = 8, у третьего разряда – 2 2 = 4, у второго – 2 1 = 2 и у младшего– 2 0 = 1.

Если вес младшего значащего разряда равен IМЗР = 1 мА, то вес старшего значащего разряда будет IСЗР = 8 мА, а максимальный выходной ток преобразователя IВЫХ.МАХ = 15 мА и соответствует коду 11112. Понятно, что коду 10012, например, будет соответствовать IВЫХ = 9 мА и т.д.

Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 5.5, а.

Для преобразования выходного тока в напряжение используют схему, приведённую на рис. 5.5, б. Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется из соотношения:

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3 %, а в 10-м разряде – 0,05 % и т.д.

Рассмотренная схема при всей ее простоте имеет ряд недостатков:

Источник