Меню

Установка разных трансформаторы тока

Как подключить трансформатор тока

Сегодня обсудим, как подключить трансформатор тока. Рассмотрим некоторые особенности измерительных приборов. Должны называть инструмент вспомогательным. Используется совместно со счетчиками электрической энергии, защитными цепями. Ток вторичной обмотки пропорционален потребляемому полезной нагрузкой – электрическими двигателями, нагревательными приборами, освещением. Позволит оценить параметры мощной промышленной сети без риска порчи контрольного оборудования. Косвенной выгодой становится безопасность обслуживающего персонала, снимающего показания, ведущего контроль. Значительно уменьшает требования к квалификации, снимает другие ограничения.

Общие сведения о трансформаторах тока

Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:

  1. ГОСТ 7746-2001.
  2. ГОСТ 23624-2001.

Небольшой трансформатор

Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.

Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:

  • Полную мощность потребления в ВА.
  • Реактивную мощность в вар.
  • Активную мощность Вт.

Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).

Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.

В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.

Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:

    Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.

Подключение трансформатора тока

Подключение трансформатора тока

Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.

Маркировка трансформаторов тока

Различные трансформаторы

Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:

  1. Логотип производителя с последующей надписью «трансформатор тока». Достаточно сложно промахнуться, выбрав в магазине другой прибор.
  2. Тип трансформатора характеризуется конструктивными особенностями, видом изоляции. Расшифровка приводится в стандартах, указанных выше. Рядом в маркировке идет климатическое исполнение. Есть сомнения в умении читать шильдик, проще дома заранее распечатать таблицы ГОСТ. При необходимости следует изучить конструктивные особенности. Поможет понять, как подключить трансформатор, оценить пригодность для цепи в принципе.
  3. Порядковый номер по реестру предприятия-изготовителя понадобится при обращении в службу поддержки (иностранные компании), используется для отчетности, если покупку осуществит не физическое лицо.
  4. Номинальное напряжение первичной обмотки указывается для всех трансформаторов тока за исключением встроенных. Потому что в последнем случае электрические параметры должны быть соблюдены внешним по отношению к прибору устройством.
  5. Номинальная частота может отсутствовать, если (по значению напряжения) можно понять: стандартна для государства (РФ – 50 Гц).
  6. В природе встречаются трансформаторы с несколькими выводами вторичной обмотки. Позволит получить два-три прибора в одном. В зависимости от электрической схемы будет меняться коэффициент трансформации. Напротив параметров указывается номер вторичной обмотки.

Характеристики трансформатора тока

Характеристики трансформатора тока

Надеемся, читатели теперь знают, чем рассматриваемая задача отличается от вопроса о том, как подключить понижающий трансформатор 220/12 В. Совершенно разные вещи. Обмотки идут последовательно с нагрузкой, измерителем. Коэффициент трансформации показывает, какой прибор контроля можно использовать во вторичной цепи.

Источник

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Орлов Анатолий Владимирович

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Соединение трансформаторов тока и обмоток реле в полную звезду

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Двухфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду
Однофазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
Соединение трансформаторов тока и обмоток реле в неполную звезду

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

Соединение трансформаторов тока и обмоток реле в неполную звезду

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Соединение трансформаторов тока и обмоток реле в неполную звезду Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Соединение трансформаторов тока в треугольник, а обмоток реле в звезду

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Соединение трансформаторов тока и обмоток реле в неполную звезду

 Включение реле на разность токов 2 – фаз (схема восьмерки)

Симметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ  Включение реле на разность токов 2 – фаз (схема восьмерки) Двухфазно КЗ АВ или ВС
 Включение реле на разность токов 2 – фаз (схема восьмерки) При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Соединение трансформаторов тока в фильтр токов нулевой последовательности

Соединение трансформаторов тока в фильтр токов нулевой последовательности

На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Последовательное соединение трансформаторов тока

 Последовательное соединение трансформаторов тока

На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Источник



Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Схематическое изображение ТТ Рис. 4. Схематическое изображение ТТ Устройство ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

Пример наружного использования ТТ

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Видео по теме

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Читайте также:  Формула расчета сопротивления конденсатора переменному току