Меню

Воздушные линии провода воздушных линий изоляторы опоры

Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры

Содержание

  1. Разновидности опор электропередач
  2. Деревянные опоры ВЛ
  3. Стальные опоры электропередачи
  4. Железобетонные опоры электропередачи
  5. Применение провода СИП

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока — не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования. Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами. Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа — анкерным участком.

Провода, подвешиваемые на изоляторах (А, — длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /. Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ — 7 м; 220 кВ — 8 м; до зданий или сооружений до 35 кВ — 3 м; 110 кВ — 4 м; 220 кВ — 5 м. Длина пролета / определяется экономическими условиями. Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ — 150…200 м; 220 кВ — до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 —35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле

где U — напряжение линии, кВ; — наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь — толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле

Стойку опоры выполняют составной: верхнюю часть (собственно стойку) — из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) — из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 — 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Стальные опоры широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком — подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

Железобетонные опорыпо сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные — более энергозатратны). Основное преимущество железобетонных опор — уменьшение расхода стали на 40…75%, недостаток — большая масса. По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления.

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Провода воздушных линий выполняют неизолированными, состоящими из одной или нескольких свитых проволок. Провода из одной проволоки, называемые однопроволочными (их изготавливают сечением от 1 до 10 мм2), имеют меньшую прочность и применяются только на ВЛ напряжением до 1 кВ. Многопроволочные провода, свитые из нескольких проволок, применяются на ВЛ всех напряжений.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм. Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность. Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Многопроволочные провода, скрученные из нескольких проволок, обладают большой гибкостью; такие провода могут выполняться любым сечением (их изготавливают сечением от 1,0 до 500 мм2).

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси. Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность. Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Читайте также:  Как сложить провода от зарядок

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС — материал провода;
  • цифрами — сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС — из стального сердечника и алюминиевых проволок;
  • ПС — из стальных проволок;
  • ПСТ — из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 — сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 — однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Стальные тросы, применяемые на ВЛ в качестве грозозащитных, изготавливают из оцинкованной проволоки; их сечение должно быть не менее 25 мм2. На ВЛ напряжением 35 кВ применяют тросы сечением 35 мм2; на линиях ПО кВ — 50 мм2; на линиях 220 кВ и выше —70 мм2.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше — по условиям потерь на корону. На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Такие колебания провода с амплитудой 2…35 мм, длиной волны 1…20 м и частотой 5…60 Гц называются вибрацией.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.

Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные напряжения от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от напряжения в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 — 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 —35 кВ применяют штыревые изоляторы.

Электрический ток, проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ. При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода. Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

При уменьшении температуры воздуха от +40 до 40 °С и увеличении скорости ветра от 1 до 20 м/с тепловые потери изменяются от 50 до 1000 Вт/м. При положительных температурах окружающего воздуха (0…40 °С) и незначительных скоростях ветра (1 …5 м/с) тепловые потери составляют 75…200 Вт/м.

Для определения воздействия перегрузки на увеличение потерь напряжения сначала определяется

где RQ — сопротивление провода при температуре 02, Ом; R0] — сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с — коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличение сопротивления провода по сравнению с сопротивлением, соответствующим расчетной нагрузке, возможно при перегрузке 30 % на 12 %, а при перегрузке 50 % — на 16 %

Увеличения потери напряжения AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери напряжения будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери напряжения кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

С начала века получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП).

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем — изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечения проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий. Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь напряжения и мощности за счет уменьшения реактивного сопротивления. Параметры прямой последовательности линий:

  • АСБ95 — R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 — соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 — 0,26 и 0,078 Ом/км;
  • АС120 — 0,27 и 0,29 Ом/км.

Эффект от снижения потерь напряжения при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности — 18 %.

Источник



Воздушные линии электропередачь.Элементы воздушных линий.Опоры,изоляторы,провода

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Читайте также:  Самуил маршак воробьи по проводам

Долгое время основным материалом для проводов были медь и бронза. В настоящее время провода, как правило, изготовляют из алюминия и стали, что позволяет экономить дефицитные цветные металлы и снижать их стоимость. Редко используют провода из бронзы и сплавов алюминия. Медные провода применяют на специальных линиях (контактная сеть железных дорог, трамваев, троллейбусов и т. п.).

Медь обладает высокой электрической проводимостью. Для твердотянутой меди, используемой в электротехнике, ее удельная проводимость γ = 53∙10 6 См/м. Механическая прочность меди также высока. Медные провода хорошо противостоят химическому воздействию различных веществ. Они отличаются тем, что, находясь в воздухе, покрываются тонкой оксидной пленкой, которая защищает их от дальнейшего разрушения.

Алюминий обладает меньшей проводимостью, чем медь. Для твердотянутого алюминия его удельная проводимость γ = 32∙10 6 См/м. Он менее прочен, чем медь, и так же, как она, не разрушается на открытом воздухе, покрываясь оксидной пленкой.

Сталь по сравнению с медью и алюминием менее электропроводна, ее проводимость зависит от проходящего по проводу переменного тока. При очень малом токе γ = 7,5∙10 б См/м.

Опоры поддерживают провода и тросы на определенной высоте над уровнем земли или воды.
По назначению опоры разделяют на промежуточные, анкерные, концевые, угловые и специальные. Опоры бывают деревянные, железобетонные и металлические. Деревянные опоры применяют на линиях 0,38–10 кВ, реже 35 кВ, железобетонные – практически на линиях всех классов напряжения распределительных сетей, а металлические – на линиях 35–110 кВ. Опоры состоят из вертикальных или наклонных стоек и поперечной траверсы, на которой через изоляторы и арматуру крепятся провода. Обычно стойки и траверсы используют из различных материалов.

Изоляторы.Линейные изоляторы ВЛ предназначены для изолирования проводов от опор и других несущих конструкций, а также для крепления проводов и тросов к опорам. В большинстве случаев они выдерживают значительные механические нагрузки. Материал изоляторов должен выдерживать воздействие переменных температур, осадков, солнца и т. д. Таким материалом является, главным образом, фарфор и стекло. Механическая прочность стеклянных изоляторов выше, а размеры меньше, чем фарфоровых. Кроме того, они медленнее изнашиваются. При электрическом пробое стеклянные изоляторы разрушаются, что значительно упрощает контроль за ними.изолятор ыбывает: штыревые и подвесные изоляторы.

Арматура. Соединение изоляторов в гирлянде, крепление к ним проводов, подвеска гирлянд на опорах, соединение проводов и другие работы выполняют с помощью специальных типовых деталей, называемых линейной арматурой. Арматура должна обладать большой механической прочностью, хорошей шарнирностью и высокой коррозионной стойкостью. Ее изготовляют из ковкого чугуна и стали и оцинковывают. Арматура бывает: сцепная, поддерживающая, натяжная, соединительная, контактная, защитная.

Электрический провод ( провод) — кабельное изделие, содержащее одну или несколько скрученных проволок или одну или более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься легкая неметаллическая оболочка, обмотка и (или) оплетка из волокнистых материалов или проволоки, и не предназначенное, как правило, для прокладки в земле.

Источник

Устройство воздушных ЛЭП разного напряжения

Транспортировка электрической энергии на средние и дальние расстояния чаще всего производится по линиям электропередач, расположенным на открытом воздухе. Их конструкция всегда должна отвечать двум основным требованиям:

1. надежности передачи больших мощностей;

2. обеспечения безопасности для людей, животных и оборудования.

При эксплуатации под воздействием различных природных явлений, связанных с ураганными порывами ветра, наледью, выпадения инея линии электропередач периодически подвергаются повышенным механическим нагрузкам.

Иней на проводах воздушной ЛЭП

Для комплексного решения задач безопасной транспортировки электрических мощностей энергетикам приходится поднимать провода, находящиеся под напряжением на большую высоту, разносить их в пространстве, изолировать от строительных элементов и монтировать тоководами повышенных сечений на высокопрочных опорах.

Общее устройство и компоновка воздушной ЛЭП

Воздушная линия электропередачи 110 кВ

Схематично любую линию передачи электроэнергии можно представить:

опорами, установленными в грунте;

проводами, по которым пропускается ток;

линейной арматурой, смонтированной на опорах;

изоляторами, закрепленными на арматуре и удерживающими ориентацию проводов в воздушном пространстве.

Дополнительно к элементам ВЛ необходимо отнести:

фундаменты для опор;

Устройство воздушной линии электропередачи

1. анкерными, предназначенными для выдерживания усилий натянутых проводов и оборудованных натяжными устройствами на арматуре;

2. промежуточными, используемыми для закрепления проводов через поддерживающие зажимы.

Расстояние по грунту между двумя анкерными опорами называется анкерным участком или пролетом, а у промежуточных опор между собой или с анкерной — промежуточным.

Когда воздушная ЛЭП проходит над водными преградами, инженерными сооружениями или другими ответственными объектами, то по концам такого участка устанавливают опоры с натяжными устройствами проводов, а расстояние между ними называют промежуточным анкерным пролетом.

Провода между опорами никогда не натягивают как струну — в прямую линию. Они всегда немного провисают, располагаясь в воздухе с учетом климатических условий. Но при этом обязательно учитывается безопасность их расстояния до наземных объектов:

проводов линий связи или других ВЛ;

промышленных и других объектов.

Провисание провода от натянутого состояния называют стрелой провеса. Она оценивается разными способами между опорами потому, что верхние части оных могут быть расположены на одном уровне или с превышениями.

Стрела провеса относительно самой высокой точки опоры всегда бывает больше, чем у нижней.

Габариты, протяженность и конструкция каждого типа воздушной ЛЭП зависят от типа тока (переменный или постоянный) транспортируемой по ней электрической энергии и величины ее напряжения, которое может быть менее 0,4 кВ или достигать 1150 кВ.

Устройство проводов воздушных линий

Поскольку электрический ток проходит только по замкнутому контуру, то питание потребителей выполняется минимум двумя проводниками. По такому принципу создаются простые воздушные ЛЭП однофазного переменного тока с напряжением 220 вольт. Более сложные электрические цепи передают энергию по трех или четырехпроводной схеме с глухо изолированным или заземленным нулем.

Диаметр и металл для провода подбираются под проектную нагрузку каждой линии. Самыми распространенными материалами являются алюминий и сталь. Они могут выполняться единой монолитной жилой для низковольтных схем или сплетаться из многопроволочных конструкций для высоковольтных ЛЭП.

Внутреннее межпроволочное пространство может заполняться нейтральной смазкой, повышающей стойкость к нагреву или быть без нее.

Многопроволочные конструкции из алюминиевых проводов, хорошо пропускающих ток, создаются со стальными сердечниками, которые предназначены для восприятия механических нагрузок натяжения, предотвращения обрывов.

Виды проводов для воздушных ЛЭП

ГОСТом дается классификация открытых проводов для воздушных ЛЭП и определена их маркировка: М, А, AC, ПСО, ПС, ACKC, АСКП, АСУ, ACO, АСУС. При этом однопроволочные провода обозначаются величиной диаметра. Например, сокращение ПСО-5 читается «провод стальной. выполненный одной жилой с диаметром 5мм». У многожильных проводов для ЛЭП используется другая маркировка, включающая обозначение двумя цифрами, записанными через дробь:

первая — общая площадь сечения алюминиевых жил в мм кв;

вторая — площадь сечения стальной вставки (мм кв).

Кроме открытых металлических проводников, в современных воздушных линиях все больше применяются провода:

защищенные экструдированным полимером, предохраняющим от возникновения КЗ при захлестывании фаз ветром или совершении набросов посторонних предметов с земли.

Воздушные линии с самонесущими СИП проводами постепенно вытесняют старые неизолированные конструкции. Они все чаще применяются во внутренних сетях, изготавливаются из медных или алюминиевых жил, покрытых резиной с защитным слоем из диэлектрических волокнистых материалов либо полихлорвиниловыми пластикатами без дополнительной внешней защиты.

Провода воздушных линий электропередач

Чтобы исключить появление коронного разряда большой протяженности провода ВЛ-330 кВ и высшего напряжения расщепляют на дополнительные потоки.

Читайте также:  Провод с реле вентилятора

Виды проводов для воздушных ЛЭП

На ВЛ-330 два провода монтируют горизонтально, у линии 500 кВ их увеличивают до трех и размещают по вершинам равностороннего треугольника. Для ВЛ 750 и 1150 кВ применяют расщепление на 4, 5 или 8 потоков соответственно, расположенных по углам собственных равносторонних многоугольников.

Образование «короны» ведет не только к потерям электроэнергии, но и искажает форму синусоидального колебания. Поэтому с ней борются конструктивными методами.

Обычно опоры создаются для закрепления проводов одной электрической цепи. Но на параллельных участках двух линий может применяться одна общая опора, которая предназначена для их совместного монтажа. Такие конструкции называют двухцепными.

Двухцепная воздушная опора ЛЭП

Материалом для изготовления опор могут служить:

1. профилированные уголки из различных сортов стали;

2. бревна строительной древесины, пропитанные составами от загнивания;

3. железобетонные конструкции с армированными прутьями.

Изготовленные из дерева конструкции опор являются самыми дешевыми, но они даже при хорошей пропитке и надлежащем обслуживании служат не более, чем 50÷60 лет.

Виды воздушных опор ЛЭП до 1000 вольт

По техническому исполнению опоры ВЛ выше 1 кВ отличаются от низковольтных своей сложностью и высотой крепления проводов.

Металлические опоры ВЛ-110 кВ

Их изготавливают в виде вытянутых призм или конусов с широким основанием внизу.

Любая конструкция опоры рассчитывается на механическую прочность и устойчивость, обладает достаточным проектным запасом к действующим нагрузкам. Но следует учитывать, что при эксплуатации возможны нарушения различных ее элементов в результате коррозии, ударов, несоблюдения технологии монтажа.

Это приводит к ослаблению жесткости единой конструкции, деформациям, а иногда и падениям опор. Часто такие случаи происходят в те моменты, когда на опорах работают люди, выполняя демонтаж или натяжение проводов, создающие переменные осевые усилия.

По этой причине допуск бригады монтеров к работе на высоте с конструкции опор проводится после проверки их технического состояния с оценкой качества ее заглубленной части в грунте.

На воздушных ЛЭП для отделения токоведущих частей электрической схемы между собой и от механических элементов конструкции опор используют изделия из материалов, обладающие высокими диэлектрическими свойствами с удельным сопротивлением ÷ Ом∙м. Их называют изоляторами и изготавливают из:

Изоляторы для проводов воздушных ЛЭП

Конструкции и габариты изоляторов зависят:

от величины приложенных к ним динамических и статических нагрузок;

значения действующего напряжения электроустановки;

Усложненная форма поверхности, работающая под воздействием различных атмосферных явлений, создает увеличенный путь для протекания возможного электрического разряда.

Изоляторы, устанавливаемые на воздушных линиях для крепления проводов, подразделяются на две группы:

Фарфоровые или керамические штыревые одиночные изоляторы нашли большее применение на ВЛ до 1 кВ, хотя работают на линиях до 35 кВ включительно. Но их используют при условии крепления проводов низких сечений, создающих небольшие тяговые усилия.

Гирлянды из подвесных фарфоровых изоляторов устанавливают на линиях от 35 кВ.

Конструкция гирлянды из фарфоровых изоляторов

В состав комплекта единичного фарфорового подвесного изолятора входит диэлектрический корпус и шапка, выплавленная из ковкого чугуна. Обе эти детали скрепляются специальным стальным стержнем. Общее количество таких элементов в гирлянде определяется по:

величине напряжения ВЛ;

особенностям эксплуатации оборудования.

При увеличении напряжения линии количество изоляторов в гирлянде добавляется. Например, для ВЛ 35 кВ их достаточно установить 2 или 3, а на 110 кВ — уже потребуется 6÷7.

Эти конструкции обладают рядом преимуществ перед фарфоровыми:

отсутствием внутренних дефектов изоляционного материала, влияющих на образование токов утечек;

повышенной прочностью к усилиям скручивания;

прозрачностью конструкции, позволяющей визуально оценивать состояние и выполнять контроль угла поляризации светового потока;

отсутствием признаков старения;

меньшими нагрузками от собственного веса;

автоматизацией производства и плавки.

Недостатками стеклянных изоляторов являются:

слабая антивандалная устойчивость;

низкая прочность на действие ударных нагрузок;

возможность повреждений при транспортировке и монтаже от механических усилий.

Они обладают повышенной механической прочностью и уменьшенным до 90% весом по сравнению с керамическими и стеклянными аналогами. К дополнительным преимуществам относятся:

бо́льшая стойкость к загрязнениям из атмосферы, которая, однако, не исключает необходимость периодической очистки их поверхности;

хорошая восприимчивость перенапряжений;

Долговечность полимерных материалов тоже зависит от условий эксплуатации. В воздушной среде с повышенными загрязнениями от промышленных предприятий у полимеров могут проявиться явления «хрупкого излома», заключающиеся в постепенном изменении свойств внутренней структуры под воздействием химических реакций от загрязняющих веществ и атмосферной влаги, протекающих в комплексе с электрическими процессами.

При расстреле вандалами изоляторов из полимера дробью или пулями обычно не происходит полного разрушения материала, как у стекла. Чаще всего дробинка или пуля пролетает навылет или застревает в корпусе юбки. Но диэлектрические свойства при этом все равно занижаются и поврежденные элементы в гирлянде требуют замены.

Поэтому подобное оборудование необходимо периодически осматривать методами визуального контроля. А выявить подобные повреждения без оптических приборов практически невозможно.

Арматура воздушных линий

Для крепления изоляторов на опоре ВЛ, сборки их в гирлянды и монтажа к ним токонесущих проводов выпускаются специальные крепежные элементы, которые принято называть арматурой линии.

Элементы арматуры для воздушных ЛЭП

По выполняемым задачам арматуру классифицируют на следующие группы:

сцепную, предназначенную для соединения подвесных элементов различными способами;

натяжную, служащую для крепления натяжных зажимов к проводам и гирляндам анкерных опор;

поддерживающую, выполняющую удержание креплений проводов, шлейфов и узлов монтажа экранов;

защитную, предназначенную для сохранения работоспособности оборудования ВЛ при воздействии на нее атмосферных разрядов и механических колебаний;

соединительную, состоящую из овальных соединителей и термитных патронов;

установки штыревых изоляторов;

монтажа СИП проводов.

Каждая из перечисленных групп имеет широкий ассортимент деталей и требует более пристального изучения. Например, в состав только защитной арматуры входят:

кольца и экраны;

Защитные рога создают искровой промежуток, отводят появляющуюся электрическую дугу при возникновении перекрытия изоляции и таким способом защищают оборудование ВЛ.

Кольца и экраны отводят дугу от поверхности изолятора, улучшают распределение напряжения по всей площади гирлянды.

Разрядники защищают оборудование от волн перенапряжения, возникающих при ударе молний. Они могут применяться на основе трубчатых конструкций из винипластовых или фибробакелитовых трубок с электродами либо быть изготовлены вентильными элементами.

Изоляторы и разрядники ВЛ-10 кВ

Гасители вибраций работают на тросах и проводах, предотвращают повреждения от усталостных напряжений, создаваемых вибрациями и колебаниями.

Заземляющие устройства воздушных линий

Необходимость повторного заземления опор ВЛ вызвана требованиями безопасной работы при возникновении аварийных режимов и грозовых перенапряжениях. Сопротивление контура заземляющего устройства не должно превышать 30 Ом.

У металлических опор все крепежные элементы и арматура должны присоединяться к PEN проводнику, а у железобетонных объединенный ноль связывает собой все подкосы и арматуру стоек.

На опорах из дерева, металла и железобетона штыри и крюки при монтаже СИП с несущим изолированным проводником не заземляют, за исключением случаев необходимости выполнения повторных заземлений для защит от перенапряжений.

Защитное заземление для воздушных ЛЭП

Крюки и штыри, смонтированные на опоре, соединяют с контуром заземления сваркой, используя стальную проволоку или прут не тоньше 6 мм по диаметру с обязательным наличием антикоррозионного покрытия.

На железобетонных опорах для заземляющего спуска применяют металлическую арматуру. Все контактные соединения заземляющих проводников сваривают или зажимают в специальном болтовом креплении.

Опоры воздушных линий электропередач с напряжением 330 кВ и выше не заземляют из-за сложности реализации технических решений для обеспечения безопасной величины напряжений прикосновения и шага. Защитные функции заземления в этом случае возложены на быстродействующие защиты линии.

Источник