Меню

Замена трансформаторов тока 6кв

Лицензии

Замена трансформаторов тока

Необходимость замены трансформаторов тока возникает при проведении поверочных мероприятий, которые – в зависимости от типа прибора, мощности и нагрузки – проводятся один раз 4-8 лет. Учитывая, что поверочные работы с трансформатором тока очень сложны, оптимально приобретать новые – с самым свежим сроком поверки.

Компания «10 киловольт» производит замену трансформаторов тока, устанавливает электросчетчики, проводит монтажные и проектировочные работы. Для консультаций и вопросов просим обращаться по указанным выше телефонам.

Прайс-лист на установку (замену) и перепрограммирование электросчетчиков
Наименование работы Ед. изм. Цена (руб.)
1 Замена (монтаж и демонтаж) электросчётчика однофазного (однотарифного, многотарифного) шт. 2000
2 Замена (монтаж и демонтаж) электросчётчика трехфазного (прямого включения или косвенного) шт. 3500
3 Установка, замена трансформаторов тока в цепях учета и защиты (до 1000 В) шт. 3200
4 Программирование тарифного расписания или переход на зимнее/летнее время шт. 1000
5 Меркурий 200.02 (однофазный, многотарифный) шт. 1800
6 Меркурий 230 ART-01CN (прямого включения) шт. 4700

Замена трансформаторов тока и электросчетчиков

Периодичность проверки прибора учета указывается в его инструкции по эксплуатации. При соблюдении нормативных процедур, при проверке трансформаторов тока выполняются следующие мероприятия:

  • Измерительные работы по регламентированным метрологическим параметрам;
  • Визуальный осмотр корпуса, контактных групп, узлов и деталей;
  • Измерение степени размагничивания;
  • Измерение сопротивления изоляции;
  • Контроль соответствия вводов и выводов клемм.

Установка трансформаторов тока с электросчетчиом Меркурий 230

Замена электросчетчика и трансформаторов тока на новые

Замена электросчетчика и трансформаторов тока на новые

Для каждого из тестов установлены свои нормативные показатели. Если какой-либо из показателей при поверке трансформатора тока выходит за пределы нормативных значений – все устройство признается негодным к эксплуатации. Это значит, что требуется замена трансформаторов тока на новые.

Сложность поверочных работ

Для проведения метрологических испытаний необходимо пользоваться услугами компаний, которые предусматривают в своем штате наличие квалифицированных метрологов и аккредитованные измерительные лаборатории. Данная необходимость серьезно усложняет процедуру поверки и делает ее дорогостоящей – оборудование стоит денег, а работникам необходимо платить зарплату.

Как правило, трансформаторы тока эксплуатируются при высокой интенсивности, кроме того – достаточно много установлено оборудования старого образца. В результате поверочных испытаний может возникнуть ситуации, что один их параметров не укладывается в норму. А это означает, что трансформатор тока подлежит замене.

Нетрудно подсчитать, что логичнее обойтись без процедуры поверки: замена трансформаторов тока на новые и стоимость работ по монтажу окажутся меньше, если проводить весь комплекс мероприятий.

Какой трансформатор тока покупать

Всегда выгоднее покупать трансформатор тока, срок поверочных работ которого будет больше. Трансформаторы со сроком 8 лет стоят дороже, но не настолько, чтобы на этом экономить.

Компания «10 киловольт» предлагает свои услуги: мы гарантируем, что работа по замене трансформатора тока будет выполнена качественно, аккуратно и грамотно.

Мы подберем тип устройства согласно параметрам вашей энергосети, осуществим покупку и доставку оборудования на объект, обеспечим квалифицированный монтаж и тестирование новых трансформаторов тока. Компания предоставляет клиенту все документы, которые требуются по законодательству.

Обязательно обратите внимание на дату окончания срока эксплуатации трансформатора тока и электросчетчика.

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

Читайте также:  Пять действий электрического тока

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник



Замена трансформаторов тока в ПКУ и КСО

Замена трансформаторов тока в ПКУ и КСО

Трансформаторы тока используются в пунктах коммерческого учёта (ПКУ), камерах сборных одностороннего обслуживания (КСО) и других электротехнических установках, в которых устанавливаются электромеханические счетчики энергии или измерительный комплекс (ИК).

Основные причины необходимости замены трансформаторов тока (ТТ)

В России необходимость замены трансформаторов тока и напряжения, используемых в цепях контроля и учета, вызвана массовостью применения устаревших систем организации и технологий учета на высоковольтных участках линий электропередач. Проще говоря, реклоузер, с вакуумными выключателями и датчиками на основе катушек Роговского или трансформаторов тока с двойными сердечниками и установка в щит управления электронного счетчика всех типов электроэнергии (полной, активной и реактивной), позволяет отказаться от ПКУ в общепринятом виде. Но в России 75-80% оборудования сетей 6-10 кВ морально и физически изношено (срок службы 25 лет и более), что приводит к необходимости менять отдельные элементы ИК. И сама архитектура сетей далека от совершенства, но ее враз не переделаешь.

Изменение мощности понижающей подстанции

Развитие территорий приводит к увеличению потребления электроэнергии внутри региона или местности. Для обеспечения потребностей необходимо увеличивать мощность подстанции с помощью установки новых трансформаторов с повышенными характеристиками по току. Это приводит к тому, что требуемый ток в 5 А, который применяется в измерительных цепях, обеспечить не получится. Например, использование ТТ в сети с номинальным током 100 А, с коэффициентом трансформации 100/5 при переходе понижающего трансформатора на номинальный ток в 200 А приведет к появлению тока в измерительных цепях в 10А, что недопустимо.

Электротехнические повреждения ТТ

Электротехнические повреждения ТТ возникают достаточно редко, и это связано с грубым нарушением правил эксплуатации ИК или форс-мажорными обстоятельствами (залив водой или удар молнией).

Наиболее частая причина выгорания ТТ — межвитковое замыкание, которое возникает при:

  • высыхании и разрушении изоляции в результате длительной эксплуатации (старение);
  • пробое изоляции в результате ее повреждения в ходе эксплуатации на повышенных режимах (длительное превышение номинального тока в результате подключения мощных потребителей);
  • пробое изоляции в результате значительного скачка напряжения на высоковольтной стороне (межфазное или короткое замыкание, или удар молнии).

Чаще всего причиной «выгорания» ТТ является сочетание причин. К этим причинам можно добавить скорость отключения масляного выключателя (0,8…1,2 с) при возникновении аварийной ситуации, за которое ТТ и измерительные цепи получают серьезный удар.

Замена ТТ по результатам поверки

Поверка ИК проводится раз в срок до 8-ми в зависимости от применяемого оборудования и условий эксплуатации. ИК, работающие в составе АСКУЭ, поверяют раз в 4 года.

Стоит отметить, что стоимость поверки ИК намного превышает стоимость замены ТТ на новый. К этому следует добавить потери в результате отключения и простоя оборудования потребителя, т.к. для линий энергообеспечения потребителей I и II категории время допустимого отключения не может превышать 4-х часов. Поэтому, имеет смысл заменить ТТ во время отключения до поверки и исключить возможную причину отклонений от требуемых нормативов. Новый ТТ будет включен в акт поверки всего ИК.

Читайте также:  Почему возникает ток размыкания в каком направлении он протекает

Утеря или невосстановимое повреждение документации на ИК

Утеря документации связана со сменой собственника, пожаром или затоплением — это не такая уж и редкость, т.к. о документах вспоминают только перед поверкой. В этом случае производится полная поверка ИК и составление акта, который подписывают владелец электротехнического оборудования и представитель поставщика электроэнергии.

Общее правило

Вне зависимости от причин порядок замены ТТ остается неизменным:

  • отключение, для производства работ, проводится после уведомления потребителей и представителя поставщика электроэнергии;
  • работы производятся квалифицированным персоналом на основе наряда;
  • после подключения выполняется комплекс инструментальных измерений фактических характеристик ИК представителем метрологической службы (электроизмерительной лаборатории);
  • по результатам испытаний и измерений оформляется акт с указанием фактических параметров в присутствии представителя поставщика электроэнергии;
  • принимаются меры для исключения возможности внесения изменений в ИК — пломбирование, опечатывание или маркировка.

Невыполнение любого из пунктов приводит к судебным искам по поводу:

  • электротравмы при привлечении необученного персонала;
  • повреждения оборудования или имущества потребителей;
  • несанкционированного подключения.

ГК Энерготехмонтаж предоставляет услуги по замене ТТ любого типа. Специалисты компании могут участвовать в ремонте и испытаниях оборудования с номинальным напряжением 6-10 кВ. Статус и квалификация сотрудников компании позволяет проводить работы в комплексе, включая установку реклоузеров с системами учета и управления нового поколения.

Источник

Монтаж трансформаторов тока 6—10 кВ

Трансформатор тока ТПЛ-10

Ток и напряжение на шинах распределительных устройств и в электрических цепях измеряют с помощью измерительных трансформаторов тока или трансформаторов напряжения, которые служат для понижения тока или напряжения первичных цепей электроустановок переменного тока, питания катушек измерительных приборов, устройств релейной защиты и автоматики, присоединяемых к вторичным обмоткам измерительных трансформаторов.
При включении в цепь через измерительные трансформаторы применяют легкие и дешевые измерительные приборы, рассчитанные на малые ток (5 А) и напряжение (100 В), что обеспечивает безопасное их обслуживание.
Трансформаторы тока предназначены для измерения больших токов, когда невозможно включение приборов непосредственно на токи контролируемых цепей. Наличие трансформаторов тока позволяет устанавливать измерительные приборы на любом расстоянии от контролируемых цепей, а также концентрировать их в одном месте — на щите или пульте управления.
Трансформатор тока состоит из замкнутого магнитопровода, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку трансформатора тока включают последовательно в цепь, в которой нужно измерять ток, а к вторичной обмотке присоединяют токовые катушки измерительных и контрольных приборов, реле и др. Вторичную обмотку изолируют от первичной и заземляют для обеспечения безопасности обслуживаемого персонала. Число витков в первичной и вторичной обмотках должно быть таким, чтобы ток во вторичной обмотке при номинальном в первичной составлял 5 А.
Трансформаторы тока подразделяют на пять классов точности: 0,2; 0,5; 1; 3; 10. Класс точности характеризует величину допустимых погрешностей трансформаторов (в процентах) при номинальных токах. Трансформаторы тока классов 0,5; 1; 3 используют преимущественно в промышленных установках, класса точности 0,2 — только для лабораторных измерений. При включении приборов через измерительные трансформаторы возникает погрешность, которая обычно не превышает 0,5—1 % измеряемой величины.
Первичная обмотка состоит из одного или нескольких витков большого сечения, рассчитанного на номинальный ток. Выбор трансформатора тока зависит от его параметров — номинального напряжения, рабочего тока, класса точности вторичной обмотки и данных по термической и динамической устойчивости при прохождении токов к. з.
Трансформаторы тока различают по конструкции: опорные, проходные, шинные, встроенные, разъемные, втулочные. Они бывают одно- и многовитковые, с одной вторичной обмоткой или несколькими. Различают также трансформаторы тока по характеру изоляции. При монтаже РУ напряжением 6—10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В — с литой, хлопчатобумажной и фарфоровой.
Буквы в условном обозначении трансформаторов тока означают следующее: Т — трансформатор тока, П — проходной, О — одновитковый, М — многовитковый, Л — с литой изоляцией, Ф — с фарфоровой изоляцией. Цифра после букв означает номинальное напряжение. Отсутствие в обозначении буквы П указывает на то, что трансформатор тока не проходной, а опорный. К основному обозначению трансформатора тока добавляется число, указывающее класс точности, или дополнительно дробь, указывающая класс точности и номинальный первичный ток (при наличии двух сердечников). Кроме того, в обозначение могут быть добавлены буквы, характеризующие исполнение трансформатора тока: У — усиленное (по термической или динамической устойчивости), Д — для дифференциальной защиты, 3 — для защиты от замыканий на землю (если дополнительных обозначений нет, исполнение нормальное).
Трансформатор тока ТПЛ-10 (проходной с литой изоляцией), рассчитанный на номинальный ток до 400 А, применяют в КРУ внутренней установки. Он имеет один или два прямоугольных шихтованных сердечника 3 (рис. 1), на верхних стержнях которых расположены катушки вторичных обмоток 5 (одна или две). Первичную обмотку 7 изготовляют из изолированного провода для малых токов и из шинной меди для больших токов. Изоляция выполнена литой эпоксидной смолой (между обмотками и от заземленных деталей). Образующийся монолитный корпус 1 является и защитой обмоток от механических повреждений. На нижней части стержня магнитопровода закреплены два стальных угольника 8, которые служат основанием для трансформатора. Трансформатор тока ТПЛ имеет опорно- проходную конструкцию. В отличие от ТПЛ одновитковый трансформатор тока ТШЛ называется шинным, поскольку в качестве первичной обмотки используется токопроводящая шина.
Выводы Л1 и Л2 (линейные) первичной обмотки — медные пластины с отверстиями для болтовых соединений, расположение которых в корпусе 1 зависит от типа трансформатора тока. Начало и конец вторичных (измерительных) обмоток И1 и И2 соединяют с внешними цепями специальными контактными пластинами 6 и винтами 4, расположенными на одной из сторон монолитного корпуса.
Трансформатор тока серии ТПЛМ-10 (проходной с литой изоляцией модернизированный) внутренней установки, рассчитанный на номинальный первичный ток до 400 А, применяют в шкафах КРУ. Он состоит из одного или двух прямоугольных шихтованных сердечников с обмотками.

Рис. 1; Трансформатор тока ТПЛ-10:
1 — корпус, 2 — болт заземления, 3 — сердечник (магнитопровод), 4 — винт, 5,7 — вторичная и первичная обмотки, 6 — контактные пластины, 8 — угольник

Катушечная группа, залитая эпоксидным компаундом, представляет собой монолитный изоляционный блок. Основанием трансформатора служат два стальных угольника, укрепленных на сердечнике. В горизонтальных полках угольников имеются четыре отверстия для крепления трансформатора. На вертикальной полке одного из угольников расположен болт заземления, обозначенный буквой 3. На сердечнике установлена табличка с техническими данными трансформатора.
Разновидностью трансформаторов тока ТПЛ являются ТПЛУ-10, выполняемые по той же шкале, но на токи от 10 до 100 А. Они имеют усиленное исполнение по устойчивости к токам к. з. Класс точности сердечника 0,5. Если в обозначении этого трансформатора появляется буква Р, то его сердечник допускает присоединение вторичной цепи для питания релейной защиты.
Трансформаторы тока ТПЛУ-10, так же как и ТПЛ-10, имеют один или два прямоугольных сердечника из трансформаторной стали, на верхний стержень которых надета вторичная обмотка из изолированного провода. Сверху вторичной обмотки размещена первичная, которую на малые токи выполняют из изолированного провода, а на большие — из голой меди. Межвитковую изоляцию в последнем случае изготовляют из полос электрокартона.
Трансформаторы серии ТПЛ рассчитаны для работы в любом положении (горизонтальном, вертикальном, наклонном). В трансформаторах ТПОЛ изоляцией между первичной и вторичной обмотками и между первичной обмоткой и заземленными деталями служит также литая изоляция на основе эпоксидной смолы. Эпоксидный корпус образует сплошной изоляционный слой, который обеспечивает надежную защиту внутренних частей от механических повреждений. Трансформатор тока ТПОЛ-10 применяют на подстанциях и в РУ промышленных предприятий.
Трансформатор тока ТПФ-10 (проходной с фарфоровой изоляцией на напряжение 10 кВ) состоит из одного или двух сердечников 1 (рис. 2), охватывающих фарфоровые изоляторы 2. Вторичная обмотка 3, состоящая из одной или двух катушек, надета на стержень сердечника, а первичная обмотка 4, состоящая из нескольких витков круглого изолированного провода или ленточной меди, продета через отверстия изоляторов. Начало и конец первичных обмоток JI1 и Л2 приварены к медным контактным пластинам 5, выведенным наружу через прямоугольные отверстия в торцевых крышках 6 трансформатора. На фланце 8 укреплены изолированные колодки 9, на которые через изоляционные втулки выведены начало и конец вторичных обмоток И1 и И2, а также болт заземления 11. По углам фланца расположены отверстия 10 для крепления трансформатора тока. Обмотки защищены прямоугольным кожухом 7 от механических повреждений. Габариты и масса трансформаторов тока ТПФ-10 значительно больше, чем у ТПЛ-10.

Читайте также:  Регулятор силы тока для сварки

Трансформатор тока ТПФ-10

Рис. 2. Трансформатор тока ТПФ-10:
1 — сердечник, 2 — изолятор, 3, 4 — вторичная и первичная обмотки, 5 — контактная пластина, 6 — крышка, 7 — кожух, 8 — фланец, 9 — изолированная колодка, 10 — отверстие для крепления трансформатора тока, 11 — болт заземления

В цепях напряжением до 500 В для измерения токов и мощности и учета энергии применяют катушечные опорные трансформаторы тока простой конструкции, состоящие из магнитопровода, на который намотаны две обмотки (первичная — для включения в измеряемую цепь и вторичная—для присоединения приборов).
Для защиты кабельных линий от замыкания отдельных жил кабелей на землю выпускают трансформаторы тока ТЗР (для защиты от замыкания на землю, разъемный), имеющие разъемный магнитопровод, что позволяет надевать их на смонтированные трехфазные бронированные кабели диаметром не более 65 мм.
Трансформатор тока ТЗР состоит из сердечника и ярма, набранных из отдельных полос электротехнической стали. На сердечнике трансформатора размещена вторичная обмотка, концы которой выведены на изоляционную колодку. Первичной обмоткой служит кабель. Лапка трансформатора имеет болт диаметром 8 мм для присоединения заземляющей шины.
В нормальных условиях геометрическая сумма токов проходящих по жилам кабеля, равна нулю или близка к нему. Вследствие этого сердечник трансформатора почти не намагничивается и во вторичной обмотке не образуется электродвижущая сила (эдс), способная вызвать срабатывание присоединенного к ней реле. Если произойдет замыкание на землю одной из фаз защищаемой установки или участка сети или нарушится равномерность загрузки по фазам, суммарный магнитный поток не будет равен нулю, вызовет ток во вторичной обмотке и произойдет замыкание контактов в цепи сигнализации или отключение защиты.
Кроме разъемных трансформаторов нулевой последовательности ТЗР применяют другие трансформаторы аналогичного назначения, например с литой изоляцией TЗЛ и хлопчатобумажной ТЗ.
В схемах РУ и подстанций используют также трансформатор тока ТКБ для питания отключающих обмоток приводов. Он состоит из шихтованного сердечника, на боковых стержнях которого надеты первичная и вторичная обмотки. Начало и конец обмоток выведены на щиток, укрепленный на верхней части магнитопровода. Особенностью трансформаторов тока ТКБ является быстрое насыщение железа и стабильность вторичного тока.
Для измерения тока и питания схем защиты в сетях напряжением до 1000 В применяют катушечные трансформаторы тока ТК и другие с хлопчатобумажной изоляцией.
Монтаж трансформаторов тока состоит из двух операций: ревизии и проверки перед установкой и установки. До начала монтажа трансформаторы тока проверяют предварительно в монтажных мастерских; там же (при необходимости) сушат обмотки трансформаторов. Если сопротивление изоляции обмоток менее 1 МОм, трансформаторы тока сушат тепловоздуходувкой или в сушильном шкафу при температуре воздуха не выше 90 °С. Во время сушки сопротивление изоляции измеряют через каждые полчаса. Сушку трансформаторов напряжения 1 — 10 кВ можно считать законченной, если сопротивление изоляции будет не менее 10 МОм.
Подлежащие монтажу трансформаторы тока подвергают ревизии, при которой проверяют комплектность аппарата и крепежных деталей, состояние фарфоровых частей и кожуха, целость обмотки, колодки вторичных выводов, наличие обозначений выводов и паспортной таблички, правильность обозначений (полярность) выводов, состояние выводных стержней и резьбы на них, наличие и исправность гаек и шайб. Монтаж начинают с разметки шаблонами расположения отверстий и конструкций (плит, угольников) в месте установки трансформаторов тока, затем сверлят отверстия необходимого диаметра и устанавливают конструкции.
Трансформаторы тока монтируют на конструкциях или в проходных плитах, а также на стальных перегородках в камерах КРУ. Их поднимают на проектные места вручную за фланцы, укрепляя на конструкции или плите болтами вначале без затяжки. Основные вертикальные оси должны находиться в одной плоскости или располагаться симметрично по отношению к осям ближайших элементов установки, с которыми они в дальнейшем будут соединены шинами. Выверку трансформаторов тока осуществляют перемещением в зазорах отверстий на плите или конструкции. По окончании выверки постепенно и равномерно затягивают крепящие болты.
При монтаже трансформаторов тока необходимо соблюдать следующие требования:
при установке в проемах стен и перекрытий между корпусом трансформатора тока и стеной надо оставлять по всему периметру зазор 2—3 мм (в который закладывается лист толя) для возможности свободного демонтажа трансформатора тока, а также предохранения его корпуса от коррозии вследствие сырости на стенах и перекрытиях;
нельзя ставить трансформаторы тока корпусами (кожухами) вплотную один к другому из-за нарушения их охлаждения (между их корпусами должен оставаться просвет не менее 100 мм);
в горизонтальных перекрытиях и опорных конструкциях для удобства обслуживания трансформаторы тока следует устанавливать так, чтобы их плиты с паспортной табличкой были обращены вверх или в сторону коридора управления (при установке на вертикальных стенах ячеек);
при номинальном токе трансформатора тока более 1500 А надо принимать меры для предотвращения нагрева близко расположенных стальных деталей;
шины высокого напряжения рекомендуется присоединять к зажимам трансформаторов тока так, чтобы все шины со стороны питания (например, от сборных шин) были присоединены к зажимам с пометкой Л1 (начало обмотки трансформатора), а отходящие шины— к зажимам
Л2 (конец обмотки), в этом случае и на вторичной стороне трансформатора тока зажимы с пометками И1 и И2 будут соответственно обозначать начало и конец обмотки;
токопроводящие стержни и изоляторы не должны испытывать изгибающих усилий от присоединенных к их зажимам шин и проводов.
Вторичные обмотки, не присоединенные к приборам, должны быть замкнуты накоротко и заземлены непосредственно на зажимах трансформатора тока. Установленный трансформатор тока заземляют. Вторичную обмотку также заземляют гибким медным проводом, который присоединяют к болту заземления на корпусе трансформатора тока.

  1. Рассказано о назначении трансформаторов тока и напряжения.
  2. Как устроен трансформатор тока и каков принцип его действия?
  3. Как расшифровать обозначение трансформаторов тока ТКБ, ТПОФ-10, ТПЛУ-10, ТЗР?

Источник