Меню

Защита от токов высоких гармоник

Умный сайт для вашего энергокомплекса

Как избавиться от гармоник в энергосистеме

Гармоники возникают в любой сложной энергетической системе. Эти искажения параметров тока могут привести к поломке дорогостоящего оборудования и даже к коротким замыканиям. Гармоники часто представляются как сложная проблема, требующая фундаментальных научных знаний гармонического анализа. Однако на практике достаточно знать ключевые аспекты этой проблемы и основные способы ее решения.

Причины появления гармоник и их последствия

Гармоники — это искажения (отклонения от заданных параметров) синусоиды колебаний частоты и напряжения, вызванные сторонними факторами. Простая резистивная нагрузка имеет одинаковые формы синусоиды.


Синусоида колебаний в асинхронном двигателе

В линейных схемах (источник тока и нагрузка – резистор) синусоида идеально симметричная, и разность между синусоидами отсутствует. Однако в эту идеально гармоничную картину в сложных системах неизбежно вносятся помехи и добавляются новые гармоники. В современных реалиях одной из основных причин возникновения «вредоносных» гармоник являются разнообразные твердотельные силовые полупроводниковые устройства. Преобразователи частоты, тиристоры, диоды, устройства плавного пуска, другие элементы энергосистемы создают гармоники.
Также источниками гармоник могут быть мощные потребители тока, трансформаторы, сварочное оборудование, системы промышленного освещения, выпрямители.

Теоретически, все нагрузки являются источниками гармоник и передают их в энергосистему. При этом источник энергии производит гармонику одной частоты (ее называют несущей).

Предотвратить это явление невозможно, можно лишь снизить его негативное влияние на оборудование. Если этого не сделать, энергосистема может столкнуться с серьезными проблемами, так как гармоники представляют собой нечто вроде паразитных токов, которые в первую очередь нарушают эффективность энергосистемы.

Так, несинусоидальность напряжения может привести к повышенному нагреву двигателя и созданию моментов вращения, которые приводят к вибрациям. В целом, гармоники способны вызвать повреждение конденсаторов, изоляции и короткие замыкания, перегрев и перегрузку трансформаторов, нарушить работу систем связи, чувствительной электроники и защитных устройств, основанных на измерении сопротивления.

Мониторинг качества электрической энергии и обнаружение гармоник

Присутствие гармоник лучше всего определять по результатам мониторинга качества электроэнергии, а не после аварийных отключений и поломок оборудования.

Мониторинг является обязательной частью безопасного функционирования сложных энергосистем. Современные анализаторы качества электроэнергии позволяют контролировать множество параметров тока, включая гармоники. Например, трехфазные анализаторы PITE 3561 могут выполнять разовые или долговременные (до 40 суток) тесты энергосистемы, выявляя в том числе гармонические искажения каждой из трех фаз.


Анализатор качества электроэнергии PITE-3561-1500A

Подобные анализаторы дают возможность записать диаграмму гармоник, увидеть пиковые и средние значения, чтобы провести анализ и найти источник проблемы. Без подобных приборов невозможно своевременно обнаружить опасные гармоники, особенно в сложных системах со множеством нелинейных потребителей.

Фильтры гармоник

Мониторинг качества электроэнергии — первая линия обороны в борьбе с гармониками. Следующей являются специальные меры по снижению вреда от гармонических искажений.

Прежде всего — фильтры, которые подавляют гармоники. Это избирательное подавление гармоники, которая может нанести наибольший вред оборудованию. Так, в однофазных цепях это третья гармоника, фильтр запирает ее на участке фильтр-нагрузка, что снижает паразитный ток в проводнике. Недостатком фильтров является необходимость установки на каждой нелинейной нагрузке, создающей гармоники.

Фильтр эффективно запирает гармонику на участке. Пример гармоник, характерных для двигателей постоянного тока и многих двигателей переменного тока. Коэффициент искажения синусоидальности кривой на «A» составляет 26% — это высокий негативный показатель. Фильтр эффективно снижает его до 8% на «E».

Невозможно предотвратить, но можно обезопасить

Гармоники действительно невозможно уничтожить. Более того, высокочастотные гармоники легко распространяются через силовые кабели и антенны, через индукцию возникают в соседних цепях. Однако можно защитить энергосистему от вредоносного действия гармоник. Для этого гармоники направляются в отдельные колебательные контуры, в которых на определенной частоте реактивное сопротивление близко к нулю. Для сложных систем понадобится несколько таких контуров, но они обеспечат сокращение гармоник до безопасного уровня. При этом регулярный мониторинг качества электроэнергии позволит своевременно выявить гармоники.

Если вам нужна профессиональная консультация по диагностике электрооборудования, просто отправьте нам сообщение!

Источник

Гармоники в электрических сетях: причины, источники, защита

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.

По кратности гармоники подразделяются на четные и нечетные. То есть гармоника №1 – это 50 Гц, 2 – 100 Гц, 3 -150 Гц и т.д. Каждая из них является одной из составляющих результирующей формы напряжения и тока. А значит, что напряжение и ток в сети можно свободно разложить на гармонические составляющие.

Гармоники и их сумма

Гармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

  • по пути распространения выделяют пространственные либо кондуктивные;
  • по прогнозируемости времени возникновения выделяют случайные либо систематические;
  • по продолжительности могут быть кратковременными (импульсными) либо длительными.
Читайте также:  Вычислите силу тока проходящего по прямолинейному проводнику длиной 4 см

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Развитие тока в нейтрали

Рис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Схема LC-фильтра

Рис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

Шунтирующий фильтр

Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Принцип действия активного кондиционера гармоник

Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Источник



Влияние высших гармоник напряжения и тока на работу электрооборудования

Высшие гармоники напряжения и тока оказывают влияние на элементы систем электроснабжения и линии связи.

Основными формами воздействия высших гармоник на системы электроснабжения являются:

увеличение токов и напряжений высших гармоник вследствие параллельного и последовательного резонансов;

снижение эффективности процессов генерации, передачи, использования электроэнергии;

старение изоляции электрооборудования и сокращение вследствие этого срока его службы;

ложная работа оборудования.

Влияние резонансов на системы

Влияние резонансов на системыРезонансы в системах электроснабжения обычно рассматриваются применительно к конденсаторам, в частности к силовым конденсаторам. При превышении гармониками тока уровней, предельно допустимых для конденсаторов, последние не ухудшают свою работу, однако через некоторое время выходят из строя.

Другой областью, где резонансы могут приводить к выходу из строя элементов оборудования, являются системы управления нагрузкой с помощью тональных частот. Для того, чтобы предотвратить поглощение сигнала силовыми конденсаторами, их цепи разделяют настроенным последовательным фильтром (фильтр-«пробка»). В случае местного резонанса гармоники тока в цепи силового конденсатора резко возрастают, что приводит к отказу настроенного конденсатора последовательного фильтра.

В одной из установок фильтры, настроенные на частоту 530 Гц с проходным током 100 А каждый, блокировали цепь силовой конденсаторной установки, имеющей 15 секций по 65 квар. Конденсаторы этих фильтров вышли из строя через два дня. Причиной оказалось наличие гармоники с частотой 350 Гц, в непосредственной близости к которой были обнаружены условия резонанса между настроенным фильтром и силовыми конденсаторами.

Влияние гармоник на вращающиеся машины

Влияние высших гармоник напряжения и тока на работу электрооборудования Гармоники напряжения и тока приводят к дополнительным потерям в обмотках статора, в цепях ротора, а также в стали статора и ротора. Потери в проводниках статора и ротора из-за вихревых токов и поверхностного эффекта при этом больше, чем определяемые омическим сопротивлением.

Токи утечки, вызываемые гармониками в торцевых зонах статора и ротора, приводят к дополнительным потерям.

В индукционном двигателе с ротором со скошенными пазами и пульсирующими магнитными потоками в статоре и роторе высшие гармоники вызывают дополнительные потери в стали. Величина этих потерь зависит от угла скоса пазов и характеристик магнитопровода.

Среднее распределение потерь от высших гармоник характеризуется следующими данными; обмотки статора 14 %; цепи ротора 41 %; торцевые зоны 19 %; асимметричные пульсации 26 %.

Читайте также:  Процесс проводимости электрического тока

За исключением потерь на асимметричные пульсации их распределение в синхронных машинах приблизительно аналогично.

Следует отметить, что соседние нечетные гармоники в статоре синхронной машины вызывают в роторе гармонику одинаковой частоты. Например, 5- и 7-я гармоники в статоре вызывают в роторе гармоники тока 6-го порядка, вращающиеся в разные стороны. Для линейных систем средняя плотность потерь на поверхности ротора пропорциональна величине , однако из-за разного направления вращения плотность потерь в некоторых точках пропорциональна величине (I5 + I7)2.

Дополнительные потери — одно из самых отрицательных явлений, вызываемое гармониками во вращающихся машинах. Они приводят к повышению общей температуры машины и к местным перегревам, наиболее вероятным в роторе. Двигатели с ротором типа «беличья клетка» допускают более высокие потери и температуру, чем двигатели с фазным ротором. Некоторые руководства ограничивают допустимый уровень тока обратной последовательности в генераторе 10 %, а уровень напряжения обратной последовательности на вводах индукционных двигателей 2 %. Допустимость гармоник в этом случае определяют по тому, какие уровни напряжений и токов обратной последовательности они создают.

Моменты вращения, создаваемые гармониками. Гармоники тока в статоре вызывают соответствующие моменты вращения: гармоники, образующие прямую последовательность в направлении вращения ротора, а образующие обратную последовательность – в обратном направлении.

Токи гармоник в статоре машины вызывают движущую силу, приводящую к появлению на валу вращающих моментов в направлении вращения магнитного поля гармоники. Обычно они очень малы и к тому же частично компенсируются из-за противоположного направления. Несмотря на это, они могут привести к вибрации вала двигателя.

Влияние гармоник на статическое оборудование, линии электропередачи. Гармоники тока в линиях приводят к дополнительным потерям электроэнергии и напряжения.

В кабельных линиях гармоники напряжения увеличивают воздействие на диэлектрик пропорционально увеличению максимального значения амплитуды. Это, в свою очередь, увеличивает число повреждений кабеля и стоимость ремонтов.

В линиях сверхвысокого напряжения гармоники напряжения по той же причине могут вызывать увеличение потерь на корону.

Влияния высших гармоник на трансформаторы

Гармоники напряжения вызывают в трансформаторах увеличение потерь на гистерезис и потерь, связанных с вихревыми токами в стали, а так же потерь в обмотках. Сокращается также срок службы изоляции.

Увеличение потерь в обмотках наиболее важно в преобразовательном трансформаторе, так как наличие фильтра, присоединяемого обычно к стороне переменного тока, не снижает гармоники тока в трансформаторе. Поэтому требуется устанавливать большую мощность трансформатора. Наблюдаются также локальные перегревы бака трансформатора.

Отрицательный аспект воздействия гармоник на мощные трансформаторы состоит в циркуляции утроенного тока нулевой последовательности в обмотках, соединенных в треугольник. Это может привести к их перегрузке.

Влияние высших гармоник на батареи конденсаторов

Влияние высших гармоник на батареи конденсаторовДополнительные потери в электрических конденсаторах приводят к их перегреву. В общем случае конденсаторы проектируются так, чтобы допускать определенную токовую перегрузку. Конденсаторы, выпускаемые в Великобритании, допускают перегрузку 15%, в Европе и Австралии – 30%, в США – 80%, в СНГ – 30%. При превышении этих величин, наблюдающихся в условиях повышенных напряжении высших гармоник на вводах конденсаторов, последние перегреваются и выходят из строя.

Влияние высших гармоник на устройства защиты энергосистем

Гармоники могут нарушать работу устройств защиты или ухудшать их характеристики. Характер нарушения зависит от принципа работы устройства. Цифровые реле и алгоритмы, основанные на анализе выборки данных или точки пересечения нуля, особенно чувствительны к гармоникам.

Чаще всего изменения характеристик несущественны. Большинство типов реле нормально работает при коэффициенте искажения до 20%. Однако увеличение доли мощных преобразователей в сетях может в будущем изменить ситуацию.

Проблемы, возникающие из-за гармоник, различны для нормальных и аварийных режимов и ниже рассмотрены отдельно.

Влияние гармоник в аварийных режимах

Влияние гармоник в аварийных режимахУстройства защиты обычно реагируют на напряжение или ток основной частоты, а все гармоники в переходном режиме либо отфильтровываются, либо не воздействуют на устройство. Последнее характерно для электромеханических реле, особенно используемых в максимальной токовой защите. Эти реле имеют большую инерцию, что делает их практически не чувствительными к высшим гармоникам.

Более существенным оказывается влияние гармоник на работу защиты, строящейся на измерении сопротивлении. Дистанционная защита, в которой производится измерение сопротивлений на основной частоте, может давать значительные ошибки в случае наличия в токе короткого замыкания высших гармоник (особенно 3-го порядка). Большое содержание гармоник обычно наблюдается в случаях, когда ток короткого замыкания течет через землю (сопротивление земли доминирует в общем сопротивлении контура). Если гармоники не отфильтровываются, вероятность ложной работы весьма высока.

В случае металлического короткого замыкания в токе преобладает основная частота. Однако в связи с насыщением трансформатора возникает вторичное искажение кривой, особенно в случае большой апериодической составляющей в первичном токе. При этом также возникают проблемы обеспечения нормальной работы защиты.

В установившихся режимах работы нелинейность, связанная с перевозбуждением трансформатора, вызывает только гармоники нечетного порядка. В переходных режимах могут возникнуть любые гармоники, наибольшие амплитуды имеют обычно 2- и 3-я.

Однако при правильном проектировании большинство из перечисленных проблем легко разрешаются. Правильный выбор оборудования устраняет множество трудностей, связанных с измерительными трансформаторами.

Фильтрация гармоник, особенно в цифровых защитах, наиболее важна для дистанционных защит. Работы, выполненные в области цифровых способов фильтрации, показали, что хотя алгоритмы такой фильтрации часто достаточно сложны, получение нужного результата не представляет особых трудностей.

Влияние гармоник на системы защиты в нормальных режимах работы электрических сетей. Низкая чувствительность устройств защиты к параметрам режима в нормальных условиях обусловливает практическое отсутствие проблем, связанных с гармониками в этих режимах. Исключение составляет проблема, связанная с включением в сеть мощных трансформаторов, сопровождающимся броском намагничивающего тока.

Амплитуда пика зависит от индуктивности трансформатора, сопротивления обмотки и момента времени, в который происходит включение. Остаточный поток в момент перед включением несколько увеличивает или уменьшает амплитуду в зависимости от полярности потока по отношению к начальному значению мгновенного напряжения. Так как ток на вторичной стороне в течение намагничивания отсутствует, большой первичный ток может вызвать ложное срабатывание дифференциальной защиты.

Воздействие гармоник на оборудование потребителейНаиболее простым способом исключения ложных срабатываний является использование задержки времени, однако это может привести к серьезному повреждению трансформатора, если авария произойдет во время его включения. На практике нехарактерную для сетей 2-ю гармонику, присутствующую в токе включения, используют для блокировки защиты, хотя зашита остается достаточно чувствительной к внутренним повреждениям трансформатора во время включения.

Воздействие гармоник на оборудование потребителей

Влияние высших гармоник на телевизоры

Гармоники, увеличивающие пик напряжения, могут вызвать искажения изображения и изменение яркости.

Люминесцентные и ртутные лампы. Балластные устройства этих ламп иногда содержат конденсаторы и при определенных условиях может возникнуть резонанс, приводящий к выходу ламп из строя.

Влияние высших гармоник на компьютеры

Существуют пределы на допустимые уровни искажений в сетях, питающих компьютеры и системы обработки данных. В некоторых случаях они выражаются в процентах от номинального напряжения (для компьютера IВМ — 5%) либо в виде отношения пика напряжения к действующему значению (СDС устанавливает допустимые его пределы значениями 1,41 ± 0,1).

Влияние высших гармоник на преобразовательное оборудование

Вырезы на синусоиде напряжения, возникающие во время коммутации вентилей, могут влиять на синхронизацию другого подобного оборудования или устройств, управление которыми осуществляется в момент перехода кривой напряжения нулевого значения.

Влияние высших гармоник на оборудование с тиристорно-регулируемой скоростью вращения

Теоретически гармоники могут влиять на такое оборудование несколькими способами:

вырезы на синусоиде напряжения вызывают неправильную работу из-за пропусков зажигания тиристоров;

Читайте также:  Как первую помощь нужно оказать пострадавшему освобожденному от действия электрического тока

гармоники напряжения могут вызвать зажигание не в требуемый момент;

возникающий резонанс при наличии разных типов оборудования может привести к перенапряжениям и качаниям машин.

Описанные выше воздействия могут ощущаться и другими потребителями, присоединенными к той же сети. Если потребитель не испытывает затруднений с тиристорно-управляемым оборудованием в своих сетях, он вряд ли окажет влияние на других потребителей. Потребители, питающиеся от разных шин, теоретически могут влиять друг на друга, однако электрическая удаленность снижает вероятность такого взаимодействия.

Влияние гармоник на измерение мощности и энергии

Влияние гармоник на измерение мощности и энергииИзмерительные устройства обычно калибруются при чисто синусоидальном напряжении и увеличивают погрешность при наличии высших гармоник. Величина и направление гармоник являются важными факторами, так как знак погрешности определяется направлением гармоник.

Погрешности измерения, вызываемые гармониками, сильно зависят от типа измерительной аппаратуры. Обычные индукционные счетчики, как правило, завышают показания на несколько процентов (по 6%) при наличии у потребителя источника искажения. Такие потребители оказываются автоматически наказанными за внесение искажений в сеть, поэтому в их собственных интересах установить соответствующие средства для подавления этих искажений.

Количественных данных о влиянии гармоник на точность измерения максимума нагрузки нет. Влияние гармоник на точность измерения максимума нагрузки предположительно такое же, как и на точность измерения энергии.

Точное измерение энергии независимо от формы кривых тока и напряжения обеспечивается электронными счетчиками, имеющими более высокую стоимость.

Гармоники оказывают воздействие и на точность измерения реактивной мощности, которая четко определена лишь для случая синусоидальных токов и напряжения, и на точность измерения коэффициента мощности.

Редко упоминается влияние гармоник на точность поверки и калибровки приборов в лабораториях, хотя эта сторона вопроса также важна.

Влияние гармоник на цепи связи

Гармоники в силовых цепях вызывают шумы в цепях связи. Малый уровень шума приводит к определенному дискомфорту, при его увеличении часть передаваемой информации теряется, в предельных случаях связь становится вообще невозможной. В связи с этим при любых технологических изменениях систем электроснабжения и систем связи необходимо рассматривать влияние линий электропередачи на линии телефонной связи.

Воздействие гармоник на шумы в телефонных линиях зависит от порядка гармоники. В среднем система телефонный аппарат — человеческое ухо имеет функцию чувствительности с максимальным значением на частоте порядка 1 кГц. Для оценки влияния различных гармоник на шумы в. телефоне используются коэффициенты, представляющие собой сумму гармоник, взятых с определенными весами. Наибольшее распространение получили два коэффициента: псофометрического взвешивания и С-передачи. Первый коэффициент разработан Международным консультативным комитетом по телефонным и телеграфным системам (МККТТ) и используется в Европе, второй — Телефонной компанией «Белла» и Эдисоновским электротехническим институтом — используется в США и Канаде.

Токи гармоник в трех фазах не полностью компенсируют друг друга из-за неравенства амплитуд и фазовых углов и воздействуют на телекоммуникации возникающим при этом током нулевой последовательности (аналогично токам замыкания на землю и токам в земле от тяговых систем).

Влияние может быть также вызвано самими токами гармоник в фазах вследствие различия расстояний от фазных проводов до расположенных поблизости линий телекоммуникации.

Эти типы влияния могут быть уменьшены правильным выбором трасс линий, однако при неизбежных пересечениях линий такое влияние возникает. Особенно сильно оно проявляется в случае вертикального расположения проводов линии электропередачи и при транспозиции проводов линии связи вблизи от линии электропередачи.

При больших расстояниях (более 100 м) между линиями ток нулевой последовательности оказывается основным влияющим фактором, При снижении номинального напряжения линии электропередачи влияние падает, но оно оказывается заметным из-за использования общих опор или траншей для прокладки силовых линий низкого напряжения и линий связи.

Источник

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Что такое гармоники в электричестве

Пятая гармоника имеет частоту в пять раз выше частоты основной гармоники. На рисунке отметки с цифрами.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Смотрите также другие статьи :

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник